[1]李勋,刘丽荣,李浩,等.基于PPG信号的极简特征回归树血压估计模型设计[J].中国医学物理学杂志,2024,41(6):769-775.[doi:DOI:10.3969/j.issn.1005-202X.2024.06.016]
 LI Xun,LIU Lirong,LI Hao,et al.Regression tree model for blood pressure estimation using the minimalist characteristics of photoplethysmography signal[J].Chinese Journal of Medical Physics,2024,41(6):769-775.[doi:DOI:10.3969/j.issn.1005-202X.2024.06.016]
点击复制

基于PPG信号的极简特征回归树血压估计模型设计()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
41卷
期数:
2024年第6期
页码:
769-775
栏目:
医学信号处理与医学仪器
出版日期:
2024-06-25

文章信息/Info

Title:
Regression tree model for blood pressure estimation using the minimalist characteristics of photoplethysmography signal
文章编号:
1005-202X(2024)06-0769-07
作者:
李勋1刘丽荣1李浩2杨怜琳3王志敏3邹梅1
1.昆明学院物理科学与技术学院, 云南 昆明 650214; 2.昆明学院医学院, 云南 昆明 650214; 3.昆明市延安医院, 云南 昆明 650051
Author(s):
LI Xun1 LIU Lirong1 LI Hao2 YANG Lianlin3 WANG Zhimin3 ZOU Mei1
1. School of Physical Science and Technology, Kunming University, Kunming 650214, China 2. School of Medicine, Kunming University, Kunming 650214, China 3. Yanan Hospital of Kunming City, Kunming 650051, China
关键词:
光电容积脉搏波极简特征斯皮尔曼相关系数血压估计模型
Keywords:
Keywords: photoplethysmography minimalist characteristics Spearman correlation coefficient blood pressure estimation model
分类号:
R318;Q632
DOI:
DOI:10.3969/j.issn.1005-202X.2024.06.016
文献标志码:
A
摘要:
目的:提出一种基于光电容积脉搏波(PPG)的极简特征回归树血压估计模型。方法:从单路PPG信号中提取15个特征参数,利用斯皮尔曼相关系数筛选与血压相关性最高的4个参数,构建极简特征回归树血压模型。结果:极简特征回归树血压模型收缩压和舒张压的估计误差分别达到(-0.02±3.63) mmHg和(-0.04±2.10) mmHg。结论:提出的极简特征回归树血压模型结构简洁、准确率较高,这一发现对于在可穿戴设备中使用单路PPG信号进行血压估计具有重要意义。
Abstract:
Abstract: Objective To propose a regression tree model for the estimation of blood pressure using the minimalist characteristics of photoplethysmography (PPG) signals. Methods Fifteen characteristic parameters were extracted from the PPG signals, and the 4 parameters with the highest correlations with blood pressure were screened using the Spearman correlation coefficient to construct a regression tree model for blood pressure estimation using the minimalist characteristics. Results The estimation errors of systolic and diastolic blood pressures in the constructed model were (-0.02±3.63) mmHg and (-0.04±2.10) mmHg, respectively. Conclusion The proposed regression tree model has a simple structure and high accuracy, which is of great significance for using a single-channel PPG signal for blood pressure estimation in wearable devices.

相似文献/References:

[1]文 苗,王 成,白丽红,等.基于DTCWT和cICA的光电容积脉搏波运动干扰消除算法[J].中国医学物理学杂志,2015,32(02):229.[doi:10.3969/j.issn.1005-202X.2015.02.018]
[2]田树香,朱健铭,陈真诚,等.一种新的人体呼吸波采集方法与实现[J].中国医学物理学杂志,2014,31(05):5169.[doi:10.3969/j.issn.1005-202X.2014.05.016]
[3]石波,刘胜洋,陈建方,等.线性回归算法提取脉搏血氧特征值初步验证[J].中国医学物理学杂志,2013,30(01):3913.[doi:10.3969/j.issn.1005-202X.2013.01.019]
[4]雷恒波,郭友达,莫镜清,等.基于人脸视频的光电容积脉搏波信号获取与处理[J].中国医学物理学杂志,2016,33(11):1178.[doi:10.3969/j.issn.1005-202X.2016.11.019]
 [J].Chinese Journal of Medical Physics,2016,33(6):1178.[doi:10.3969/j.issn.1005-202X.2016.11.019]
[5]陈真诚,宋浩,朱健铭,等. 基于光电容积脉搏波的呼吸监测系统研究[J].中国医学物理学杂志,2019,36(5):579.[doi:DOI:10.3969/j.issn.1005-202X.2019.05.017]
 CHEN Zhencheng,SONG Hao,ZHU Jianming,et al. Respiration monitoring system based on photolethysmography[J].Chinese Journal of Medical Physics,2019,36(6):579.[doi:DOI:10.3969/j.issn.1005-202X.2019.05.017]
[6]张浩强,安蒙蒙,卜朝晖,等.基于超声回波信号的指端脉搏波提取[J].中国医学物理学杂志,2020,37(10):1306.[doi:DOI:10.3969/j.issn.1005-202X.2020.10.016]
 ZHANG Haoqiang,AN Mengmeng,BU Zhaohui,et al.Fingertip pulse wave extraction based on ultrasonic echo signal[J].Chinese Journal of Medical Physics,2020,37(6):1306.[doi:DOI:10.3969/j.issn.1005-202X.2020.10.016]
[7]张悦,陈真诚,梁永波,等.基于光电容积脉搏波的心房颤动识别方法[J].中国医学物理学杂志,2020,37(11):1416.[doi:DOI:10.3969/j.issn.1005-202X.2020.11.014]
 ZHANG Yue,CHEN Zhencheng,LIANG Yongbo,et al.Atrial fibrillation identification based on photoplethysmography[J].Chinese Journal of Medical Physics,2020,37(6):1416.[doi:DOI:10.3969/j.issn.1005-202X.2020.11.014]
[8]黄益平,陈真诚,梁永波,等.基于脉搏波的呼吸频率计算方法[J].中国医学物理学杂志,2021,38(9):1124.[doi:10.3969/j.issn.1005-202X.2021.09.014]
 HUANG Yiping,CHEN Zhencheng,LIANG Yongbo,et al.Calculation methods of respiratory rate based on PPG[J].Chinese Journal of Medical Physics,2021,38(6):1124.[doi:10.3969/j.issn.1005-202X.2021.09.014]
[9]彭莉,宋鑫,鄢苏鹏,等.基于PPG收缩期上升波形特征参数的无创血压检测模型[J].中国医学物理学杂志,2022,39(3):333.[doi:DOI:10.3969/j.issn.1005-202X.2022.03.013]
 PENG Li,SONG Xin,YAN Supeng,et al.Noninvasive blood pressure measurement model based on characteristic parameters of PPG systolic upstroke waveform[J].Chinese Journal of Medical Physics,2022,39(6):333.[doi:DOI:10.3969/j.issn.1005-202X.2022.03.013]
[10]潘嘉婷,梁丽诗,陈真诚.基于Bi-UNet的无创动脉血压波形重建算法[J].中国医学物理学杂志,2024,41(1):66.[doi:DOI:10.3969/j.issn.1005-202X.2024.01.010]
 PAN Jiating,LIANG Lishi,CHEN Zhencheng,et al.Non-invasive arterial blood pressure waveform reconstruction algorithm based on Bi-UNet[J].Chinese Journal of Medical Physics,2024,41(6):66.[doi:DOI:10.3969/j.issn.1005-202X.2024.01.010]

备注/Memo

备注/Memo:
【收稿日期】2024-02-25 【基金项目】昆明学院引进人才科研项目(XJ20210003);云南省科技厅基础研究计划(ZX20240033) 【作者简介】李勋,硕士,研究方向:医学信号处理,E-mail: 973338674@qq.com 【通信作者】邹梅,高级工程师,研究生导师,研究方向:医学信号处理以及光电传感器,E-mail: bill_zom@126.com
更新日期/Last Update: 2024-06-25