[1]杨华,龚明福,邹利光,等. CL-PEG-MnFe2O4纳米胶束介导的肿瘤微血管和微淋巴管双重靶向MR成像[J].中国医学物理学杂志,2019,36(9):1034-1038.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.008]
 YANG Hua,GONG Mingfu,ZOU Liguang,et al. Magnetic resonance imaging of angiogenesis and lymphangiogenesis in tumor using dual-targeted CL-PEG-MnFe2O4 nanomicelles[J].Chinese Journal of Medical Physics,2019,36(9):1034-1038.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.008]
点击复制

 CL-PEG-MnFe2O4纳米胶束介导的肿瘤微血管和微淋巴管双重靶向MR成像()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
36卷
期数:
2019年第9期
页码:
1034-1038
栏目:
医学影像物理
出版日期:
2019-09-25

文章信息/Info

Title:
 Magnetic resonance imaging of angiogenesis and lymphangiogenesis in tumor using dual-targeted CL-PEG-MnFe2O4 nanomicelles
文章编号:
1005-202X(2019)09-1034-05
作者:
 杨华1龚明福2邹利光2曾国飞1方玉1刘翠芳1
 1.重庆市中医院放射科, 重庆 400021; 2.第三军医大学新桥医院放射科, 重庆 400037
Author(s):
 YANG Hua1 GONG Mingfu2 ZOU Liguang2 ZENG Guofei1 FANG Yu1 LIU Cuifang1
 1. Department of Radiology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China; 2. Department of Radiology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
关键词:
 肿瘤内皮细胞CL-PEG-MnFe2O4纳米胶束分子成像磁共振
Keywords:
Keywords: tumor endothelial cell CL-PEG-MnFe2O4 nanomicelles molecular imaging magnetic resonance
分类号:
R318.08;R814
DOI:
DOI:10.3969/j.issn.1005-202X.2019.09.008
文献标志码:
A
摘要:
 目的:评价靶向Endoglin的CL-PEG-MnFe2O4纳米胶束在肿瘤微血管和微淋巴管MR成像中的价值。方法:乳腺癌裸鼠移植瘤模型5只,经球后静脉注入铁浓度为50 μg/mL靶向Endoglin的CL-PEG-MnFe2O4纳米微粒,总量0.15 mL。分别于对比剂注射后0、5、15、30、60和120 min进行SE T1WI、FSE T2WI、GRE T2*WI及T2 mapping扫描。在各时间点测量肿瘤信号强度,绘制时间-信号强度变化曲线,分析曲线的变化规律。测量并计算肿瘤的T2值、R2值,评价CL-PEG-MnFe2O4探针的靶向增强效能,以非靶向的PEG-PCL-MnFe2O4纳米胶束为对照。结果:纳米粒注射后早期,肿瘤呈负性增强,肿瘤周边区明显;60 min后,注射非靶向PEG-PCL-MnFe2O4纳米胶束的肿瘤信号强度恢复到基线水平,而注射靶向CL-PEG-MnFe2O4纳米胶束的肿瘤周边区仍呈斑点状强化。CL-PEG-MnFe2O4和PEG-PCL-MnFe2O4注射前,注射后0、5、15、30、60、120 min肿瘤的T2值分别为(77.98±10.29)、(44.66±5.25)、(50.80±3.85)、(54.25±5.08)、(57.20±4.04)、(59.20±7.11)、(60.15±7.43) ms和(78.66±5.71)、(44.85±5.67)、(50.06±8.62)、(63.10±8.36)、(70.19±7.71)、(74.76±10.60)、(76.63±12.13) ms。CL-PEG-MnFe2O4的时间-信号强度变化率曲线呈下降-上升-平台型;PEG-PCL-MnFe2O4的时间-信号强度变化率曲线呈下降-上升型。结论:靶向Endoglin的CL-PEG-MnFe2O4纳米胶束能与肿瘤新生血管及新生淋巴管结合,并能通过MRI检测,为肿瘤新生血管和新生淋巴管的MR靶向显像提供了实验基础。
Abstract:
Abstract: Objective To evaluate the value of Endoglin targeted CL-PEG-MnFe2O4 nanomicelles in magnetic resonance (MR) imaging of tumor microvessels and lymphatic microvessels. Methods In 5 nude-mice breast cancer xenografts models, a total of 0.15 mL CL-PEG-MnFe2O4 nanomicelles with a concentration of 50 μg/mL was intravenously administrated by retrobulbar vein. MR imaging was performed at 0, 5, 15, 30, 60, 120 min after contrast injection. The MR imaging sequences included spin echo T1-weighted imaging (SE T1WI), fast spin echo T2-weighted imaging (FSE T2WI), gradient echo T2*-weighted imaging (GRE T2*WI) and T2 mapping. The tumor signal intensity was measured at each time point, and time-intensity curve was plotted to analyze the change rule of the curve. The T2 and R2 values of the tumor were measured and calculated, so as to evaluate the target enhancement performance of CL-PEG-MnFe2O4 nanomicelles. Non-targeted PEG-PCL-MnFe2O4 was served as a control. Results In the early period after the intravenous administration of nanomicelles, the tumor was negatively enhanced and the peripheral area of the tumor had obvious enhancement. At 60 min after the intravenous administration of targeted CL-PEG-MnFe2O4 nanomicelles, the tumor displayed patchy or spot-like enhancement, which was mainly limited to the peripheral areas of the tumor. However, the tumor signal intensity returned to the baseline at 60 min after the administration of non-targeted PEG-PCL-MnFe2O4 nanomicelles. The T2 values of the tumor before and at 0, 5, 15, 30, 60 and 120 min after the administration of CL-PEG-MnFe2O4 nanomicelles were (77.98±10.29), (44.66±5.25), (50.80±3.85), (54.25±5.08), (57.20±4.04), (59.20±7.11) and (60.15±7.43) ms, respectively; and those values before and after the administration of PEG-PCL-MnFe2O4 nanomicelles were (78.66±5.71), (44.85±5.67), (50.06±8.62), (63.10±8.36), (70.19±7.71), (74.76±10.60) and (76.63±12.13) ms, respectively. After the intravenous administration of CL-PEG-MnFe2O4 nanomicelles, the time-intensity curve was decreased firstly and then increased and finally reached a plateau, while the time-intensity curve after the intravenous administration of PEG-PCL-MnFe2O4 was decrease firstly and then increased. Conclusion Endoglin targeted CL-PEG-MnFe2O4 nanomicelles can bind to tumor microvessels and lymphatic microvessels, which can be detected by MR imaging, thereby providing an experimental basis for targeted MR imaging of tumor microvessels and lymphatic microvessels.

相似文献/References:

[1]王遥,霍万里,熊壮,等.TACE手术中不同站姿下铅眼镜和铅面罩对医生眼晶状体防护效果的蒙特卡洛模拟比较[J].中国医学物理学杂志,2016,33(6):553.[doi:DOI:10.3969/j.issn.1005-202X.2016.06.003]
 [J].Chinese Journal of Medical Physics,2016,33(9):553.[doi:DOI:10.3969/j.issn.1005-202X.2016.06.003]
[2]张新,谷晓芳,王培臣,等.轻离子束治疗设备注册检验关键技术问题[J].中国医学物理学杂志,2016,33(6):559.[doi:10.3969/j.issn.1005-202X.2016.06.004]
 [J].Chinese Journal of Medical Physics,2016,33(9):559.[doi:10.3969/j.issn.1005-202X.2016.06.004]
[3]江芬芬,王培,康盛伟,等. 热释光剂量片测量肺部肿瘤放疗剂量的方法[J].中国医学物理学杂志,2016,33(6):564.[doi:10.3969/j.issn.1005-202X.2016.06.005]
 [J].Chinese Journal of Medical Physics,2016,33(9):564.[doi:10.3969/j.issn.1005-202X.2016.06.005]
[4]刘洪源,彭威,杨锐,等. 锥形束CT离线校正肺癌摆位误差[J].中国医学物理学杂志,2016,33(6):573.[doi:10.3969/j.issn.1005-202X.2016.06.007]
 [J].Chinese Journal of Medical Physics,2016,33(9):573.[doi:10.3969/j.issn.1005-202X.2016.06.007]
[5]赵彪,潘香,杨毅,等. 右乳癌保乳术后瘤床同步X线和后程电子线补量调强放疗剂量学比较[J].中国医学物理学杂志,2016,33(6):576.[doi:10.3969/j.issn.1005-202X.2016.06.008]
 [J].Chinese Journal of Medical Physics,2016,33(9):576.[doi:10.3969/j.issn.1005-202X.2016.06.008]
[6]邓南,钱建庭,刁现芬,等. 基于宽带检测放疗X-光光声效应仿体实验[J].中国医学物理学杂志,2016,33(9):865.[doi:DOI:10.3969/j.issn.1005-202X.2016.09.001]
 [J].Chinese Journal of Medical Physics,2016,33(9):865.[doi:DOI:10.3969/j.issn.1005-202X.2016.09.001]
[7]张先稳,李军,张西志,等. 宫颈癌术后5野调强放疗4个变量组合的最佳治疗模式的剂量学[J].中国医学物理学杂志,2016,33(9):872.[doi:10.3969/j.issn.1005-202X.2016.09.002]
 [J].Chinese Journal of Medical Physics,2016,33(9):872.[doi:10.3969/j.issn.1005-202X.2016.09.002]
[8]胡健,李承军,徐利明,等. 床面倾斜对剂量验证通过率的影响[J].中国医学物理学杂志,2016,33(9):881.[doi:10.3969/j.issn.1005-202X.2016.09.003]
 [J].Chinese Journal of Medical Physics,2016,33(9):881.[doi:10.3969/j.issn.1005-202X.2016.09.003]
[9]陈亚正,肖明勇,孙春堂,等. 准直器角度对宫颈癌术后VMAT计划的影响[J].中国医学物理学杂志,2016,33(9):885.[doi:10.3969/j.issn.1005-202X.2016.09.004]
 [J].Chinese Journal of Medical Physics,2016,33(9):885.[doi:10.3969/j.issn.1005-202X.2016.09.004]
[10]李毅,唐丰文,张晓智. 基于四维CT和锥形束CT确定非小细胞肺癌放疗靶区外放边界[J].中国医学物理学杂志,2016,33(9):892.[doi:10.3969/j.issn.1005-202X.2016.09.005]
 [J].Chinese Journal of Medical Physics,2016,33(9):892.[doi:10.3969/j.issn.1005-202X.2016.09.005]
[11]朱翔宇,葛中芹,张冰清,等.基于图像处理的医学影像处理平台系统设计[J].中国医学物理学杂志,2017,34(4):388.[doi:DOI:10.3969/j.issn.1005-202X.2017.04.014]
[12]洪文松,张力,陈兵锋,等. 基于Gompertz模型肿瘤放疗分析与模拟[J].中国医学物理学杂志,2018,35(1):5.[doi:DOI:10.3969/j.issn.1005-202X.2018.01.002]
 HONG Wensong,ZHANG Li,CHEN Bingfeng,et al. Gompertz model-based tumor radiotherapy analysis and simulation[J].Chinese Journal of Medical Physics,2018,35(9):5.[doi:DOI:10.3969/j.issn.1005-202X.2018.01.002]
[13]于松茂,杨敬贤,康加阜,等. 不同部位肿瘤患者模拟机复位误差的对比分析[J].中国医学物理学杂志,2018,35(2):141.[doi:DOI:10.3969/j.issn.1005-202X.2018.02.004]
 YU Songmao,YANG Jingxian,KANG Jiafu,et al. Comparison of reset errors in simulator for patients with tumors in different locations[J].Chinese Journal of Medical Physics,2018,35(9):141.[doi:DOI:10.3969/j.issn.1005-202X.2018.02.004]
[14]吴先想,郭红博,费振乐,等. CT值相对电子密度转换关系影响因素及其对剂量计算的影响分析[J].中国医学物理学杂志,2019,36(2):157.[doi:DOI:10.3969/j.issn.1005-202X.2019.02.007]
 WU Xianxiang,GUO Hongbo,FEI Zhenle,et al. Influence factors of CT value-relative electron density conversion and its effects on dose calculation[J].Chinese Journal of Medical Physics,2019,36(9):157.[doi:DOI:10.3969/j.issn.1005-202X.2019.02.007]

备注/Memo

备注/Memo:
 【收稿日期】2019-04-20
【基金项目】国家自然科学基金(81071197,81501521);重庆市前沿与应用基础研究一般项目(cstc2015jcyjA10083)
【作者简介】杨华,博士,副主任医师,主要从事磁共振分子影像研究,E-mail: yanghua780819@163.com
【通信作者】刘翠芳,E-mail: lcfhappylcf@163.com
更新日期/Last Update: 2019-09-23