相似文献/References:
[1]顾家军,叶继伦.麻醉深度监测中脑电信号特征提取方法[J].中国医学物理学杂志,2016,33(2):157.[doi:10.3969/j.issn.1005-202X.2016.02.010]
[J].Chinese Journal of Medical Physics,2016,33(02):157.[doi:10.3969/j.issn.1005-202X.2016.02.010]
[2]丁正敏,熊冬生,陈宇珂,等. 基于脑电样本熵和小波熵的麻醉深度监测[J].中国医学物理学杂志,2018,35(2):243.[doi:DOI:10.3969/j.issn.1005-202X.2018.02.024]
DING Zhengmin,XIONG Dongsheng,CHEN Yuke,et al. Sample entropy and wavelet entropy of electroencephalogram for monitoring the depth of anesthesia[J].Chinese Journal of Medical Physics,2018,35(02):243.[doi:DOI:10.3969/j.issn.1005-202X.2018.02.024]
[3]苏克阳,曾景阳,谢文钦,等. 近似熵在脑电监测麻醉深度中的应用[J].中国医学物理学杂志,2019,36(1):117.[doi:DOI:10.3969/j.issn.1005-202X.2019.01.023]
SU Keyang,ZENG Jingyang,XIE Wenqin,et al. Application of EEG approximate entropy in monitoring the depth of anesthesia[J].Chinese Journal of Medical Physics,2019,36(02):117.[doi:DOI:10.3969/j.issn.1005-202X.2019.01.023]
[4]顾家军,叶继伦,崔钰涵,等.BP网络在麻醉深度监测算法上的应用[J].中国医学物理学杂志,2021,38(8):985.[doi:DOI:10.3969/j.issn.1005-202X.2021.08.013]
GU Jiajun,YE Jilun,CUI Yuhan,et al.Application of back-propagation network in algorithm for monitoring depth of anesthesia[J].Chinese Journal of Medical Physics,2021,38(02):985.[doi:DOI:10.3969/j.issn.1005-202X.2021.08.013]
[5]顾家军,叶继伦,陈谨,等.基于GRU的多模态麻醉深度评估方法研究[J].中国医学物理学杂志,2021,38(9):1148.[doi:10.3969/j.issn.1005-202X.2021.09.018]
GU Jiajun,YE Jilun,CHEN Jin,et al.GRU-based multimodal anesthesia depth assessment[J].Chinese Journal of Medical Physics,2021,38(02):1148.[doi:10.3969/j.issn.1005-202X.2021.09.018]
[6]余陈佑,程云章.基于多域脑电参数分析的麻醉深度评估[J].中国医学物理学杂志,2022,39(7):907.[doi:DOI:10.3969/j.issn.1005-202X.2022.07.020]
YU Chenyou,CHENG Yunzhang.Estimating depth of anesthesia based on analysis of multi-domain EEG parameters[J].Chinese Journal of Medical Physics,2022,39(02):907.[doi:DOI:10.3969/j.issn.1005-202X.2022.07.020]
[7]汤卫雄,程云章,张天逸,等.基于脑电非线性特征和AdaBoost算法的诱导期麻醉深度检测[J].中国医学物理学杂志,2023,40(5):616.[doi:DOI:10.3969/j.issn.1005-202X.2023.05.015]
TANG Weixiong,CHENG Yunzhang,et al.Monitoring depth of anesthesia during induction using EEG nonlinear characteristics combined with AdaBoost algorithm[J].Chinese Journal of Medical Physics,2023,40(02):616.[doi:DOI:10.3969/j.issn.1005-202X.2023.05.015]