[1]顾家军,叶继伦,陈谨,等.基于GRU的多模态麻醉深度评估方法研究[J].中国医学物理学杂志,2021,38(9):1148-1150.[doi:10.3969/j.issn.1005-202X.2021.09.018]
 GU Jiajun,YE Jilun,CHEN Jin,et al.GRU-based multimodal anesthesia depth assessment[J].Chinese Journal of Medical Physics,2021,38(9):1148-1150.[doi:10.3969/j.issn.1005-202X.2021.09.018]
点击复制

基于GRU的多模态麻醉深度评估方法研究()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
38卷
期数:
2021年第9期
页码:
1148-1150
栏目:
医学信号处理与医学仪器
出版日期:
2021-09-26

文章信息/Info

Title:
GRU-based multimodal anesthesia depth assessment
文章编号:
1005-202X(2021)09-1148-03
作者:
顾家军1叶继伦23陈谨1祝超凡1陈玲玲1
1. 深圳技术大学健康与环境工程学院,广东深圳518118;2. 深圳大学医学部生物医学工程学院,广东深圳518060;3. 广东省生 物医学信号检测与超声成像重点实验室,广东深圳518060
Author(s):
GU Jiajun1 YE Jilun2 3 CHEN Jin1 ZHU Chaofan1 CHEN Lingling1
1. College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China 2. School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China 3. Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen 518060, China
关键词:
门循环控制单元多模态麻醉深度
Keywords:
gated recurrent unit multimodal depth of anesthesia
分类号:
R318;R614
DOI:
10.3969/j.issn.1005-202X.2021.09.018
文献标志码:
A
摘要:
常见的麻醉深度评估法普遍存在一定局限性,本研究提出一种基于GRU的多模态麻醉深度评估方法。采集20例 临床数据进行验证分析,发现通过GRU网络后输出的数值与BIS值存在较小差异和较高的关度,具有较好的麻醉深度评 估价值
Abstract:
Considering that the common methods for assessing the depth of anesthesia generally have some limitations, a gated recurrent unit (GRU) -based multimodal anesthesia depth assessment method is proposed in the study. A total of 20 cases of clinical data are collected for verification and analysis, and it is found that the value output through GRU network is close to bispectral index value, with small difference and high correlation. The proposed method is proved to have a better performance in assessing the depth of anesthesia.

相似文献/References:

[1]王远军,姜博宇,靳珍怡,等.基于小波变换的医学图像融合方法综述[J].中国医学物理学杂志,2013,30(06):4530.[doi:10.3969/j.issn.1005-202X.2013.06.016]
[2]皮一飞,吴茜,裴曦,等.基于掩膜优化的多模态医学图像刚性配准[J].中国医学物理学杂志,2018,35(9):1022.[doi:10.3969/j.issn.1005-202X.2018.09.006]
 PI Yifei,WU Qian,PEI Xi,et al.Rigid registration of multimodal medical images based on mask optimization[J].Chinese Journal of Medical Physics,2018,35(9):1022.[doi:10.3969/j.issn.1005-202X.2018.09.006]
[3]谢丽娜,马瑾璐,韩苏夏. 多模态小动物成像设备在恶性肿瘤应用中的研究进展[J].中国医学物理学杂志,2019,36(10):1191.[doi:DOI:10.3969/j.issn.1005-202X.2019.10.015]
 XIE Lina,MA Jinlu,HAN Suxia. Progress of small animal multi-modality imaging equipment in research on malignant tumors[J].Chinese Journal of Medical Physics,2019,36(9):1191.[doi:DOI:10.3969/j.issn.1005-202X.2019.10.015]
[4]张泽茹,李兆同,刘良友,等.融合感知损失的深度学习在常规MR图像转换的研究[J].中国医学物理学杂志,2021,38(2):178.[doi:DOI:10.3969/j.issn.1005-202X.2021.02.010]
 ZHANG Zeru,LI Zhaotong,et al.Application of deep learning with perceptual loss in conventional MR image translation[J].Chinese Journal of Medical Physics,2021,38(9):178.[doi:DOI:10.3969/j.issn.1005-202X.2021.02.010]
[5]郭翌,吴香奕,吴茜,等.基于循环一致生成对抗网络的多模态影像刚性配准[J].中国医学物理学杂志,2021,38(2):198.[doi:DOI:10.3969/j.issn.1005-202X.2021.02.013]
 GUO Yi,WU Xiangyi,WU Qian,et al.Rigid registration of multimodal images based on CycleGAN[J].Chinese Journal of Medical Physics,2021,38(9):198.[doi:DOI:10.3969/j.issn.1005-202X.2021.02.013]
[6]沈镇炯,彭昭,孟祥银,等.基于级联3D U-Net的CT和MR视交叉自动分割方法[J].中国医学物理学杂志,2021,38(8):950.[doi:DOI:10.3969/j.issn.1005-202X.2021.08.006]
 SHEN Zhenjiong,PENG Zhao,MENG Xiangyin,et al.Automatic optic chiasm segmentation using CT and MRI based on cascaded 3D U-Net[J].Chinese Journal of Medical Physics,2021,38(9):950.[doi:DOI:10.3969/j.issn.1005-202X.2021.08.006]

备注/Memo

备注/Memo:
【收稿日期】2021-04-21 【基金项目】深圳市产业关键技术研发项目(20190215140144982);2020 校级“质量工程”建设项目;深圳技术大学实验设备自制基 金项目(2021015777701035) 【作者简介】顾家军,硕士,工程师,研究方向:生命信息监测与图形处 理,E-mail: gujiajun@sztu.edu.cn 【通信作者】叶继伦,博士,教授,研究方向:生命信息监测与标准研究, E-mail: yejilun@126.com
更新日期/Last Update: 2021-09-27