[1]陈业,李翰威,胡德斌,等.基于人工智能的多模态影像组学特征挖掘及分析软件设计[J].中国医学物理学杂志,2024,41(12):1578-1584.[doi:DOI:10.3969/j.issn.1005-202X.2024.12.017]
 CHEN Ye,LI Hanwei,HU Debin,et al.Design of a software for multimodal radiomics features mining and analysis based on artificial intelligence[J].Chinese Journal of Medical Physics,2024,41(12):1578-1584.[doi:DOI:10.3969/j.issn.1005-202X.2024.12.017]
点击复制

基于人工智能的多模态影像组学特征挖掘及分析软件设计()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
41卷
期数:
2024年第12期
页码:
1578-1584
栏目:
医学人工智能
出版日期:
2024-12-17

文章信息/Info

Title:
Design of a software for multimodal radiomics features mining and analysis based on artificial intelligence
文章编号:
1005-202X(2024)12-1578-07
作者:
陈业李翰威胡德斌齐宏亮陈宏文
南方医科大学南方医院医学工程科, 广东 广州 510515
Author(s):
CHEN Ye LI Hanwei HU Debin QI Hongliang CHEN Hongwen
Department of Medical Engineering, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
关键词:
影像组学人工智能软件设计二分类
Keywords:
Keywords: radiomics artificial intelligence software design binary classification
分类号:
影像组学;人工智能;软件设计;二分类
DOI:
DOI:10.3969/j.issn.1005-202X.2024.12.017
文献标志码:
A
摘要:
针对影像组学研究需要使用多款软件,常存在数据不兼容、算法参数无法调节等问题,开发一款基于人工智能的影像组学分析建模软件,为医生和科研工作者提供支持图像预处理、特征提取、特征筛选、建模分析和数据可视化的影像组学集中解决方案。使用一个公开数据集对软件功能进行测试,创建8组分析模型,一一完成对测试集数据的分类预测并输出关键性能指标,通过参数调优,使得模型性能进一步优化,验证软件的可用性。该软件的使用可使研究人员更多聚焦课题本身,减少不必要的开发负担,对于影像组学研究朝着更加方便、高效的方向发展具有积极的推动作用。
Abstract:
Abstract: Various types of software needed in radiomics studies come with the problems such as data incompatibility and hyperparameter tuning. Therefore, an artificial intelligence-based software is developed for radiomics studies, providing doctors and researchers a solution with image preprocessing, feature extraction, feature selection, modeling analysis and data visualization. The usability of the software is demonstrated using a public data set. Eight sets of feature selectors and classifiers are established for classification predication on test data set and key performance indicator output. Through hyperparameter tuning, the model is further optimized. Researchers will focus more on the research itself rather than unnecessary development efforts, and radiomics studies will become more convenient and efficient with the software addressed.

相似文献/References:

[1]王弈,李传富.人工智能方法在医学图像处理中的研究新进展[J].中国医学物理学杂志,2013,30(03):4138.[doi:10.3969/j.issn.1005-202X.2013.03.013]
[2]王亚,李永欣,黄文华.人类脑计划的研究进展[J].中国医学物理学杂志,2016,33(2):109.[doi:10.3969/j.issn.1005-202X.2016.02.001]
 [J].Chinese Journal of Medical Physics,2016,33(12):109.[doi:10.3969/j.issn.1005-202X.2016.02.001]
[3]祁红琳,胡先玲,李传明,等. 基于MRI纹理特征的早期肝癌术后复发预测[J].中国医学物理学杂志,2017,34(9):908.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.010]
 [J].Chinese Journal of Medical Physics,2017,34(12):908.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.010]
[4]李双双,侯震,刘娟,等.影像组学分析与建模工具综述[J].中国医学物理学杂志,2018,35(9):1043.[doi:10.3969/j.issn.1005-202X.2018.09.010]
 LI Shuangshuang,HOU Zhen,LIU Juan,et al.Review of radiomic analysis and modeling tools[J].Chinese Journal of Medical Physics,2018,35(12):1043.[doi:10.3969/j.issn.1005-202X.2018.09.010]
[5]沙雪,巩贯忠,邓红彬,等. 18F-FDG PET/CT影像组学预测非小细胞肺癌亚型的研究[J].中国医学物理学杂志,2019,36(3):311.[doi:DOI:10.3969/j.issn.1005-202X.2019.03.013]
 SHA Xue,GONG Guanzhong,DENG Hongbin,et al. 18F-FDG PET/CT radiomic features for predicting the subtypes of non-small-cell lung cancer[J].Chinese Journal of Medical Physics,2019,36(12):311.[doi:DOI:10.3969/j.issn.1005-202X.2019.03.013]
[6]李腾翔,巩贯忠,仇清涛,等. 鼻咽癌CT影像组学量化分析研究[J].中国医学物理学杂志,2019,36(5):551.[doi:DOI:10.3969/j.issn.1005-202X.2019.05.011]
 LI Tengxiang,GONG Guanzhong,QIU Qingtao,et al. Quantitative analysis of CT radiomics features of nasopharyngeal carcinoma[J].Chinese Journal of Medical Physics,2019,36(12):551.[doi:DOI:10.3969/j.issn.1005-202X.2019.05.011]
[7]纪春阳,徐秀林,王燕. 深度神经网络技术在肿瘤细胞识别中的应用[J].中国医学物理学杂志,2019,36(9):1113.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.022]
 JI Chunyang,XU Xiulin,WANG Yan. Application of deep neural network in tumor cell recognition[J].Chinese Journal of Medical Physics,2019,36(12):1113.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.022]
[8]王沛沛,李金凯,李彩虹,等.基于人工智能技术的危及器官自动勾画在胸部肿瘤中的应用[J].中国医学物理学杂志,2019,36(11):1346.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.019]
 WANG Peipei,LI Jinkai,LI Caihong,et al.Application of automatic organs-at-risk segmentation based on artificial intelligence technology in thoracic tumors[J].Chinese Journal of Medical Physics,2019,36(12):1346.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.019]
[9]周榴,董怡,夏威,等.基于超声影像组学的原发性肝细胞癌分级预测[J].中国医学物理学杂志,2020,37(1):59.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.012]
 ZHOU Liu,DONG Yi,XIA Wei,et al.Prediction of grade of hepatocellular carcinoma by radiomics based on ultrasound[J].Chinese Journal of Medical Physics,2020,37(12):59.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.012]
[10]刘发明,江桂华,杨宁,等.新型冠状病毒肺炎的影像组学研究[J].中国医学物理学杂志,2020,37(4):463.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.012]
 LIU Faming,JIANG Guihua,YANG Ning,et al.Radiomics analysis on COVID-19[J].Chinese Journal of Medical Physics,2020,37(12):463.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.012]

备注/Memo

备注/Memo:
【收稿日期】2024-07-23 【基金项目】国家重点研发计划(2023YFC2414601);南方医科大学南方医院院长基金(2022B030, 2022B016) 【作者简介】陈业,硕士,研究方向:图像处理及软件开发,E-mail: 15915724843@163.com
更新日期/Last Update: 2024-12-20