[1]上官泓廷,刘玉红.医学图像增强方法综述[J].中国医学物理学杂志,2023,40(4):410-415.[doi:DOI:10.3969/j.issn.1005-202X.2023.04.003]
 SHANGGUAN Hongting,LIU Yuhong,A review of medical image enhancement methods[J].Chinese Journal of Medical Physics,2023,40(4):410-415.[doi:DOI:10.3969/j.issn.1005-202X.2023.04.003]
点击复制

医学图像增强方法综述()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
40卷
期数:
2023年第4期
页码:
410-415
栏目:
医学影像物理
出版日期:
2023-04-25

文章信息/Info

Title:
A review of medical image enhancement methods
文章编号:
1005-202X(2023)04-0410-06
作者:
上官泓廷1刘玉红12
1.成都医学院生物医学工程教研室, 四川 成都 610500; 2.电子科技大学生命科学与技术学院, 四川 成都 610054
Author(s):
SHANGGUAN Hongting1 LIU Yuhong1 2
1. Department of Biomedical Engineering, Chengdu Medical College, Chengdu 610500, China 2. School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
关键词:
图像处理医学图像增强直方图均衡化Retinex理论深度学习综述
Keywords:
Keywords: image processing medical image enhancement histogram?qualization Retinex theory deep learning review
分类号:
R318;TP75
DOI:
DOI:10.3969/j.issn.1005-202X.2023.04.003
文献标志码:
A
摘要:
医学图像增强的目的是通过图像增强的方法得到优化的医学图像,以帮助医生从图像中获得更多细节信息,进一步做出更加客观的诊断及制定更全面的治疗方案,在一定程度上可提高临床诊断的准确性。本文首先归纳总结当前应用较为广泛的医学图像增强处理技术,包括传统的图像增强方法、改进的图像增强方法、融合的图像增强方法以及深度学习方法,然后对这些方法的原理、优缺点加以分析和总结。最后指出无论是传统方法还是现代图像增强方法,都应在最大限度保留其优势的情况下进行融合,取长补短,注重简单化和时效性,使提高图像的视觉质量同时更具有实用性。
Abstract:
Abstract: The purpose of medical image enhancement methods is to obtain the optimized medical images through image enhancement, thereby helping to obtain more detailed information from the images, further making more objective diagnosis and formulating more comprehensive treatment plants, which will improve the accuracy of clinical diagnosis to a certain extent. After introducing the widely used medical image enhancement methods, including traditional image enhancement methods, improved image enhancement methods, combined image enhancement methods and deep learning methods, their principle, advantages and disadvantages are analyzed and summarized. Finally, it is pointed out that image enhancement methods should be combined while retaining their advantages and emphasizing simplification and efficiency to effectively improve the image quality and enhance the applicability.

相似文献/References:

[1]田 龙,李明辉,胡逸民,等.利用EPID图像金球位置自动跟踪算法研究[J].中国医学物理学杂志,2014,31(04):5038.[doi:10.3969/j.issn.1005-202X.2014.04.014]
[2]刘玉红,王志芳,杨佳仪,等.彩色图像二值化算法及应用[J].中国医学物理学杂志,2013,30(01):3873.[doi:10.3969/j.issn.1005-202X.2013.01.009]
[3]杜永兴,桑路路,秦岭,等.一种基于图像匹配的微波热疗方法[J].中国医学物理学杂志,2016,33(10):1026.[doi:10.3969/j.issn.1005-202X.2016.10.011]
 [J].Chinese Journal of Medical Physics,2016,33(4):1026.[doi:10.3969/j.issn.1005-202X.2016.10.011]
[4]朱翔宇,葛中芹,张冰清,等.基于图像处理的医学影像处理平台系统设计[J].中国医学物理学杂志,2017,34(4):388.[doi:DOI:10.3969/j.issn.1005-202X.2017.04.014]
[5]金京,孟雅丹,徐琦,等.二维分形维数在皮肤癌光学相干断层成像技术诊断中的应用[J].中国医学物理学杂志,2017,34(7):698.[doi:10.3969/j.issn.1005-202X.2017.07.010]
 [J].Chinese Journal of Medical Physics,2017,34(4):698.[doi:10.3969/j.issn.1005-202X.2017.07.010]
[6]王耿媛,赖官铨,段铮昱,等. 基于裂隙灯的眼微血管形态学参数分析在眼科疾病诊断的应用[J].中国医学物理学杂志,2018,35(3):323.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.014]
 WANG Gengyuan,LAI Guanquan,DUAN Zhengyu,et al. Application of morphological parameters analysis of ophthalmic microvasculature based on slit lamp in the diagnosis of ophthalmic diseases[J].Chinese Journal of Medical Physics,2018,35(4):323.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.014]
[7]王力,孟庆民,郭永新,等. 基于Hessian矩阵的DSA图像冠状动脉直径的测量[J].中国医学物理学杂志,2019,36(10):1182.[doi:DOI:10.3969/j.issn.1005-202X.2019.10.013]
 WANG Li,MENG Qingmin,GUO Yongxin,et al. Measurement of coronary artery diameter on DSA image based on Hessian matrix[J].Chinese Journal of Medical Physics,2019,36(4):1182.[doi:DOI:10.3969/j.issn.1005-202X.2019.10.013]
[8]孙凯,姚旭峰,马风玲,等.基于机器学习的血细胞分类研究进展[J].中国医学物理学杂志,2020,37(1):127.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.023]
 SUN Kai,YAO Xufeng,et al.Blood cell classification based on machine learning[J].Chinese Journal of Medical Physics,2020,37(4):127.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.023]
[9]惠钊,黄慧明.基于比率距离的自适应超声图像去噪方法[J].中国医学物理学杂志,2020,37(2):174.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.008]
 HUI Zhao,HUANG Huiming.Adaptive ultrasound image denoising method based on ratio distance[J].Chinese Journal of Medical Physics,2020,37(4):174.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.008]
[10]王尧,黄钢.深度学习在细胞图像分析中的应用进展[J].中国医学物理学杂志,2022,39(8):963.[doi:DOI:10.3969/j.issn.1005-202X.2022.08.008]
 WANG Yao,HUANG Gang,Advances in application of deep learning in cell image analysis[J].Chinese Journal of Medical Physics,2022,39(4):963.[doi:DOI:10.3969/j.issn.1005-202X.2022.08.008]

备注/Memo

备注/Memo:
【收稿日期】2022-11-23 【基金项目】国家自然科学基金(82001906);四川省自然科学基金(21YYJC0406);教育部重点实验室项目(202112FKY00069);国家级创新创业训练计划项目(S202013705039) 【作者简介】上官泓廷,研究方向:医学图像处理,E-mail: 1135071647@qq.com
更新日期/Last Update: 2023-04-25