相似文献/References:
[1]谭泓叶,张晓红,张海黔.银纳米粒子对乏氧胶质瘤细胞的影响[J].中国医学物理学杂志,2017,34(1):89.[doi:10.3969/j.issn.1005-202X.2017.01.018]
[J].Chinese Journal of Medical Physics,2017,34(3):89.[doi:10.3969/j.issn.1005-202X.2017.01.018]
[2]仇清涛,段敬豪,巩贯忠,等.基于三维动态区域生长算法的肝脏自动分割[J].中国医学物理学杂志,2017,34(7):660.[doi:10.3969/j.issn.1005-202X.2017.07.002]
[J].Chinese Journal of Medical Physics,2017,34(3):660.[doi:10.3969/j.issn.1005-202X.2017.07.002]
[3]门阔,戴建荣. 利用深度反卷积神经网络自动勾画放疗危及器官[J].中国医学物理学杂志,2018,35(3):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
MEN Kuo,DAI Jianrong. Automatic segmentation of organs at risk in radiotherapy using deep deconvolutional neural network[J].Chinese Journal of Medical Physics,2018,35(3):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
[4]张国前,张书旭,王锐濠,等. Auto-planning在脑胶质瘤非共面容积调强放疗计划中的应用[J].中国医学物理学杂志,2018,35(5):514.[doi:DOI:10.3969/j.issn.1005-202X.2018.05.004]
ZHANG Guoqian,ZHANG Shuxu,WANG Ruihao,et al. Application research on Auto-planning in non-coplanar VMAT plan for brain gliomas[J].Chinese Journal of Medical Physics,2018,35(3):514.[doi:DOI:10.3969/j.issn.1005-202X.2018.05.004]
[5]李渊强,吴宇雳,杨孝平.基于级联式三维卷积神经网络的肝肿瘤自动分割[J].中国医学物理学杂志,2019,36(11):1362.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.022]
LI Yuanqiang,WU Yuli,YANG Xiaoping.Automatic liver tumor segmentation based on cascaded 3D convolutional neural network[J].Chinese Journal of Medical Physics,2019,36(3):1362.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.022]
[6]秦楠楠,薛旭东,吴爱林,等.基于U-net卷积神经网络的宫颈癌临床靶区和危及器官自动勾画的研究[J].中国医学物理学杂志,2020,37(4):524.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.023]
QIN Nannan,XUE Xudong,WU Ailin,et al.Automatic segmentation of clinical target volumes and organs-at-risk in radiotherapy for cervical cancer using U-net convolutional neural network[J].Chinese Journal of Medical Physics,2020,37(3):524.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.023]
[7]缪雨季,周倬,常青.甲氟喹对胶质瘤细胞的放射增敏作用[J].中国医学物理学杂志,2021,38(1):6.[doi:DOI:10.3969/j.issn.1005-202X.2021.01.002]
MIAO Yuji,ZHOU Zhuo,CHANG Qing.The radiosensitization effect of mefloquine combined with X-ray on glioma cells[J].Chinese Journal of Medical Physics,2021,38(3):6.[doi:DOI:10.3969/j.issn.1005-202X.2021.01.002]
[8]余行,刘欢,傅玉川.放疗影像自动分割效果评估中几何参数与剂量学参数之间的关联性[J].中国医学物理学杂志,2021,38(5):540.[doi:DOI:10.3969/j.issn.1005-202X.2021.05.003]
YU Hang,LIU Huan,FU Yuchuan.Correlation between geometric parameters and dosimetric parameters in the evaluation of image auto-segmentation for radiotherapy[J].Chinese Journal of Medical Physics,2021,38(3):540.[doi:DOI:10.3969/j.issn.1005-202X.2021.05.003]
[9]邓娟,李昇霖,刘显旺,等.影像学评价大鼠胶质瘤及其微环境的研究进展[J].中国医学物理学杂志,2021,38(5):578.[doi:DOI:10.3969/j.issn.1005-202X.2021.05.010]
DENG Juan,,et al.Advances in research on imaging evaluations of rat glioma and its microenvironment[J].Chinese Journal of Medical Physics,2021,38(3):578.[doi:DOI:10.3969/j.issn.1005-202X.2021.05.010]
[10]李雪,周金治,莫春梅,等.基于特征融合的U-Net肺自动分割方法[J].中国医学物理学杂志,2021,38(6):704.[doi:DOI:10.3969/j.issn.1005-202X.2021.06.009]
LI Xue,ZHOU Jinzhi,et al.U-Net automatic lung segmentation based on feature fusion[J].Chinese Journal of Medical Physics,2021,38(3):704.[doi:DOI:10.3969/j.issn.1005-202X.2021.06.009]