[1]王瑞,齐崇,孟蓝熙,等.基于3D卷积网络和多模态MRI的脑胶质瘤自动分割[J].中国医学物理学杂志,2022,39(3):300-304.[doi:DOI:10.3969/j.issn.1005-202X.2022.03.007]
 WANG Rui,QI Chong,MENG Lanxi,et al.Auto-segmentation of glioma based on 3D convolutional network and multimodal MRI[J].Chinese Journal of Medical Physics,2022,39(3):300-304.[doi:DOI:10.3969/j.issn.1005-202X.2022.03.007]
点击复制

基于3D卷积网络和多模态MRI的脑胶质瘤自动分割()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
39卷
期数:
2022年第3期
页码:
300-304
栏目:
医学影像物理
出版日期:
2022-03-28

文章信息/Info

Title:
Auto-segmentation of glioma based on 3D convolutional network and multimodal MRI
文章编号:
1005-202X(2022)03-0300-05
作者:
王瑞1齐崇1孟蓝熙1刘志强2李少武1
1.北京市神经外科研究所/首都医科大学附属北京天坛医院, 北京 100070; 2.国家癌症中心/国家肿瘤临床医学研究中心/中国医学科学院北京协和医学院肿瘤医院放疗科, 北京 100021
Author(s):
WANG Rui1 QI Chong1 MENG Lanxi1 LIU Zhiqiang2 LI Shaowu1
1. Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China 2. National Cancer Center/National Clinical Research Center for Cancer/Department of radiotherapy, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
关键词:
胶质瘤自动分割3D卷积网络多模态MRI
Keywords:
Keywords: glioma automatic segmentation 3D convolutional network multimodal MRI
分类号:
R318
DOI:
DOI:10.3969/j.issn.1005-202X.2022.03.007
文献标志码:
A
摘要:
目的:基于三维(3D)卷积神经网络和多模态MRI实现脑胶质瘤的自动分割。方法:首先对来自BraTS2020公共数据集的369例脑胶质瘤的4个模态MRI数据进行3D剪裁、重采样、去伪影、归一化的预处理。其次将MRI数据和脑胶质瘤标注信息输入到基于U-net的3D卷积神经网络模型进行训练和测试。利用相似性系数、召回率和精确率评价整体肿瘤区域、核心肿瘤区和增强肿瘤区的分割结果。结果:在74例测试数据集上,整体肿瘤区域、核心肿瘤区域和增强肿瘤区域的相似系数平均值分别为0.88、0.77和0.73,中位值分别为0.90、0.84和0.81,召回率平均值分别为0.88、0.78和0.78,中位值分别为0.90、0.84和0.84,精确率平均值分别为0.89、0.83和0.75,中位值分别为0.91、0.89和0.79。结论:基于U-net的3D卷积神经网络在多模态MRI数据集上获得了较好的分割结果,显示其在脑胶质瘤自动分割方面的潜力,可为临床诊断分级和治疗策略选择提供参考。
Abstract:
Abstract: Objective To realize the automatic segmentation of glioma based on 3D convolutional neural network and multimodal magnetic resonance imaging (MRI). Methods The 4-modal MRI data of 369 cases of gliomas from the BRATS2020 public dataset were preprocessed by 3D clipping, resampling, artifacts removal and normalization. The preprocessed MRI data and label information of glioma were input into 3D convolutional neural network based on U-net for training and testing. The segmentation results of the whole tumor region, the core tumor region and the enhanced tumor region were evaluated using Dice similarity coefficient (DSC), recall rate and precision rate. Results For the 74 cases in testing dataset, the mean DSC of the whole tumor region, the core tumor region and the enhanced tumor region were 0.88, 0.77 and 0.73, respectively, and the median values were 0.90, 0.84 and 0.81, respectively. The mean recall rates were 0.88, 0.78 and 0.78, respectively, and the median values were 0.90, 0.84 and 0.84, respectively. The mean precision rates were 0.89, 0.83 and 0.75, respectively, and the median values were 0.91, 0.89 and 0.79, respectively. Conclusion The 3D convolutional neural network based on U-net achieves good segmentation results on multimodal MRI dataset, showing its potential for automatic segmentation of glioma, and it would be beneficial for clinical use in diagnosis and treatment planning.

相似文献/References:

[1]谭泓叶,张晓红,张海黔.银纳米粒子对乏氧胶质瘤细胞的影响[J].中国医学物理学杂志,2017,34(1):89.[doi:10.3969/j.issn.1005-202X.2017.01.018]
 [J].Chinese Journal of Medical Physics,2017,34(3):89.[doi:10.3969/j.issn.1005-202X.2017.01.018]
[2]仇清涛,段敬豪,巩贯忠,等.基于三维动态区域生长算法的肝脏自动分割[J].中国医学物理学杂志,2017,34(7):660.[doi:10.3969/j.issn.1005-202X.2017.07.002]
 [J].Chinese Journal of Medical Physics,2017,34(3):660.[doi:10.3969/j.issn.1005-202X.2017.07.002]
[3]门阔,戴建荣. 利用深度反卷积神经网络自动勾画放疗危及器官[J].中国医学物理学杂志,2018,35(3):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
 MEN Kuo,DAI Jianrong. Automatic segmentation of organs at risk in radiotherapy using deep deconvolutional neural network[J].Chinese Journal of Medical Physics,2018,35(3):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
[4]张国前,张书旭,王锐濠,等. Auto-planning在脑胶质瘤非共面容积调强放疗计划中的应用[J].中国医学物理学杂志,2018,35(5):514.[doi:DOI:10.3969/j.issn.1005-202X.2018.05.004]
 ZHANG Guoqian,ZHANG Shuxu,WANG Ruihao,et al. Application research on Auto-planning in non-coplanar VMAT plan for brain gliomas[J].Chinese Journal of Medical Physics,2018,35(3):514.[doi:DOI:10.3969/j.issn.1005-202X.2018.05.004]
[5]李渊强,吴宇雳,杨孝平.基于级联式三维卷积神经网络的肝肿瘤自动分割[J].中国医学物理学杂志,2019,36(11):1362.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.022]
 LI Yuanqiang,WU Yuli,YANG Xiaoping.Automatic liver tumor segmentation based on cascaded 3D convolutional neural network[J].Chinese Journal of Medical Physics,2019,36(3):1362.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.022]
[6]秦楠楠,薛旭东,吴爱林,等.基于U-net卷积神经网络的宫颈癌临床靶区和危及器官自动勾画的研究[J].中国医学物理学杂志,2020,37(4):524.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.023]
 QIN Nannan,XUE Xudong,WU Ailin,et al.Automatic segmentation of clinical target volumes and organs-at-risk in radiotherapy for cervical cancer using U-net convolutional neural network[J].Chinese Journal of Medical Physics,2020,37(3):524.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.023]
[7]缪雨季,周倬,常青.甲氟喹对胶质瘤细胞的放射增敏作用[J].中国医学物理学杂志,2021,38(1):6.[doi:DOI:10.3969/j.issn.1005-202X.2021.01.002]
 MIAO Yuji,ZHOU Zhuo,CHANG Qing.The radiosensitization effect of mefloquine combined with X-ray on glioma cells[J].Chinese Journal of Medical Physics,2021,38(3):6.[doi:DOI:10.3969/j.issn.1005-202X.2021.01.002]
[8]余行,刘欢,傅玉川.放疗影像自动分割效果评估中几何参数与剂量学参数之间的关联性[J].中国医学物理学杂志,2021,38(5):540.[doi:DOI:10.3969/j.issn.1005-202X.2021.05.003]
 YU Hang,LIU Huan,FU Yuchuan.Correlation between geometric parameters and dosimetric parameters in the evaluation of image auto-segmentation for radiotherapy[J].Chinese Journal of Medical Physics,2021,38(3):540.[doi:DOI:10.3969/j.issn.1005-202X.2021.05.003]
[9]邓娟,李昇霖,刘显旺,等.影像学评价大鼠胶质瘤及其微环境的研究进展[J].中国医学物理学杂志,2021,38(5):578.[doi:DOI:10.3969/j.issn.1005-202X.2021.05.010]
 DENG Juan,,et al.Advances in research on imaging evaluations of rat glioma and its microenvironment[J].Chinese Journal of Medical Physics,2021,38(3):578.[doi:DOI:10.3969/j.issn.1005-202X.2021.05.010]
[10]李雪,周金治,莫春梅,等.基于特征融合的U-Net肺自动分割方法[J].中国医学物理学杂志,2021,38(6):704.[doi:DOI:10.3969/j.issn.1005-202X.2021.06.009]
 LI Xue,ZHOU Jinzhi,et al.U-Net automatic lung segmentation based on feature fusion[J].Chinese Journal of Medical Physics,2021,38(3):704.[doi:DOI:10.3969/j.issn.1005-202X.2021.06.009]

备注/Memo

备注/Memo:
【收稿日期】2021-10-15 【基金项目】国家自然科学基金(11905295, 81901115);中国癌症基金会“北京希望马拉松”专项基金(LC2021B01) 【作者简介】王瑞,博士,讲师,主要研究方向:多模态磁共振影像,E-mail: ruiwang0903@sina.com 【通信作者】刘志强,博士,副研究员,主要研究方向:人工智能在肿瘤放射治疗中的应用,E-mail: zhiqiang.liu@cicams.ac.cn;李少武,博士,主任医师,主要研究方向:功能磁共振影像,E-mail: lys5@sina.com
更新日期/Last Update: 2022-03-28