[1]薛湛琦,王远军.基于深度学习的多模态医学图像融合方法研究进展[J].中国医学物理学杂志,2020,37(5):579-583.[doi:10.3969/j.issn.1005-202X.2020.05.009]
 XUE Zhanqi,WANG Yuanjun.Advances in multimodal medical image fusion method based on deep learning[J].Chinese Journal of Medical Physics,2020,37(5):579-583.[doi:10.3969/j.issn.1005-202X.2020.05.009]
点击复制

基于深度学习的多模态医学图像融合方法研究进展()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
37
期数:
2020年第5期
页码:
579-583
栏目:
医学影像物理
出版日期:
2020-05-25

文章信息/Info

Title:
Advances in multimodal medical image fusion method based on deep learning
文章编号:
1005-202X(2020)05-0579-05
作者:
薛湛琦王远军
上海理工大学医学影像工程研究所,上海200093
Author(s):
XUE Zhanqi WANG Yuanjun
Institute of Medical Imaging Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
关键词:
医学图像图像融合深度学习卷积神经网络深度信念网络
Keywords:
medical image image fusion deep learning convolutional neural network deep belief network
分类号:
R318;TP391
DOI:
10.3969/j.issn.1005-202X.2020.05.009
文献标志码:
A
摘要:
医学图像融合方法可以将有用的信息整合到一张图上,提高单张图像的信息量。对多模态医学图像进行融合时,如何对图像进行有效的变换,提取到不同图像中独有的特征,并施以适当的融合规则是医学图像融合领域研究的重点。近年随着深度学习的快速发展,深度学习被广泛应用于医学图像领域,代替传统方法中的一些人工操作,并在图像表示、图像特征提取以及融合规则的选择方面显示出独特优势。本文针对基于深度学习的医学图像融合进展予以探讨,介绍了卷积神经网络、卷积稀疏表示、深度自编码和深度信念网络这些常用于医学图像融合的框架,对一些应用于融合过程不同步骤的深度学习方法进行分析和总结,最后,分析了当前基于深度学习的融合方法的不足并展望了未来的研究方向。
Abstract:
The medical image fusion method can integrate useful information into a single image to increase the amount of information in a single image.When multimodal medical images are fused, how to effectively transform the images, extract the special features in different images, and apply appropriate fusion rules becomes the focus of research on medical image fusion. In recent years, with the rapid development of deep learning, deep learning has been widely used in medical images by replacing some manual operations in traditional methods and has shown unique advantages in image representation, image feature extraction and the selection of fusion rules. Herein the medical image fusion based on deep learning is discussed. Several deep learning methods that are commonly used in the framework of medical image fusion, such as convolutional neural network, convolutional sparse representation, deep self-encoding and deep belief network are introduced. Some deep learning methods that are applied to different steps of the fusion process are also summarized. Finally, the disadvantages of recent researches on the image fusion based on deep learning are analyzed, and the research direction in future is forecasted.

相似文献/References:

[1]张 硕,袁克虹.一种基于SSED的无规则噪声组织的去除方法[J].中国医学物理学杂志,2015,32(01):48.[doi:10.3969/j.issn.1005-202X.2015.01.012]
[2]赵 雷,唐 峰,鲁 雯,等.应用IQF值评价不同显示器的性能[J].中国医学物理学杂志,2014,31(03):4897.[doi:10.3969/j.issn.1005-202X.2014.03.012]
[3]杨 娟,陈兆学,姜 雪,等.基于Mean Shift的三维医学图像交互式分割方法[J].中国医学物理学杂志,2014,31(04):5026.[doi:10.3969/j.issn.1005-202X.2014.04.012]
[4]王远军,姜博宇,靳珍怡,等.基于小波变换的医学图像融合方法综述[J].中国医学物理学杂志,2013,30(06):4530.[doi:10.3969/j.issn.1005-202X.2013.06.016]
[5]王双玲,龙成章,刘辉,等.基于双向异步投票策略医学图像特征点匹配[J].中国医学物理学杂志,2016,33(4):423.[doi:10.3969/j.issn.1005-202X.2016.04.020]
 [J].Chinese Journal of Medical Physics,2016,33(5):423.[doi:10.3969/j.issn.1005-202X.2016.04.020]
[6]靳珍怡,王远军.基于非下采样轮廓波变换的多模态医学图像融合[J].中国医学物理学杂志,2016,33(5):445.[doi:10.3969/j.issn.1005-202X.2016.05.004]
 [J].Chinese Journal of Medical Physics,2016,33(5):445.[doi:10.3969/j.issn.1005-202X.2016.05.004]
[7]徐效文,杨志刚.光学相干层析医学图像分割研究现状[J].中国医学物理学杂志,2016,33(7):697.[doi:10.3969/j.issn.1005-202X.2016.07.011]
 [J].Chinese Journal of Medical Physics,2016,33(5):697.[doi:10.3969/j.issn.1005-202X.2016.07.011]
[8]张光玉,鲁雯,徐龙春,等.DICOM格式医学图像显示方法研究[J].中国医学物理学杂志,2017,34(1):32.[doi:10.3969/j.issn.1005-202X.2017.01.007]
 [J].Chinese Journal of Medical Physics,2017,34(5):32.[doi:10.3969/j.issn.1005-202X.2017.01.007]
[9]靳珍怡,王远军,聂生东. 梯度域三维头部PETCT图像融合[J].中国医学物理学杂志,2017,34(3):246.[doi:10.3969/j.issn.1005-202X.2017.03.006]
 [J].Chinese Journal of Medical Physics,2017,34(5):246.[doi:10.3969/j.issn.1005-202X.2017.03.006]
[10]张光玉,徐龙春,张敏风,等.NIFTI格式医学图像显示方法研究[J].中国医学物理学杂志,2017,34(7):681.[doi:10.3969/j.issn.1005-202X.2017.07.006]
 [J].Chinese Journal of Medical Physics,2017,34(5):681.[doi:10.3969/j.issn.1005-202X.2017.07.006]

备注/Memo

备注/Memo:
【收稿日期】2019-12-20 【基金项目】国家自然科学基金(61201067);上海市自然科学基金 (18ZR1426900) 【作者简介】薛湛琦,硕士研究生,研究方向:基于深度学习的医学图 像处理,E-mail: xuezhanqi17@163.com 【通信作者】王远军,博士,副教授,研究方向:生物医学工程、医学图 像处理,E-mail: yjusst@126.com
更新日期/Last Update: 2020-06-03