[1]马玉良,刘卫星,张淞杰,等.基于ABC-SVM的运动想象脑电信号模式分类[J].中国医学物理学杂志,2018,35(9):1056-1062.[doi:10.3969/j.issn.1005-202X.2018.09.012]
 MAYuliang,LIUWeixing,ZHANG Songjie,et al.Pattern classification of motor imagery EEG signals based on ABC-SVM algorithm[J].Chinese Journal of Medical Physics,2018,35(9):1056-1062.[doi:10.3969/j.issn.1005-202X.2018.09.012]
点击复制

基于ABC-SVM的运动想象脑电信号模式分类()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
35卷
期数:
2018年第9期
页码:
1056-1062
栏目:
医学信号处理与医学仪器
出版日期:
2018-09-27

文章信息/Info

Title:
Pattern classification of motor imagery EEG signals based on ABC-SVM algorithm
文章编号:
R318;TP391
作者:
马玉良刘卫星张淞杰王振杰张启忠
杭州电子科技大学智能控制与机器人研究所,浙江杭州310018
Author(s):
MAYuliang LIUWeixing ZHANG SongjieWANG Zhenjie ZHANG Qizhong
Institute of Intelligent Control and Robotics, Hangzhou Dianzi University, Hangzhou 310018, China
关键词:
脑电信号人工蜂群算法支持向量机正则化共空间模式模式分类
Keywords:
electroencephalogram signal artificial bee colony algorithm support vector machine regularization common spatial pattern pattern classification
分类号:
1005-202X(2018)09-1056-07
DOI:
10.3969/j.issn.1005-202X.2018.09.012
文献标志码:
A
摘要:
为了提高运动想象脑电信号分类的准确率,针对传统支持向量机(SVM)分类方法在脑电信号处理中存在寻优繁 琐、工作量大和分类正确率低等问题,本研究提出一种基于人工蜂群(ABC)算法优化SVM的分类识别方法。首先利用正 则化共空间模式对脑电信号进行特征提取,然后利用ABC算法优化SVM的惩罚因子和核参数,最后利用提取的右手和 右脚两类脑电信号样本特征对优化后的SVM进行训练和分类测试。实验结果表明ABC-SVM分类器提高了脑电信号分 类的准确率,比传统的SVM分类器准确率高出2.5%,证明该算法的可行性和较高准确性。
Abstract:
Due to the problems of traditional support vector machine (SVM) classification method in electroencephalogram (EEG) signal processing, such as high complexity of searching the optimal parameters, heavy workload and low classification accuracy, a new SVMclassification method based on artificial bee colony (ABC) algorithm is proposed in this study to improve the accuracy of motor imagery EEG recognition. Firstly, the regularization common spatial pattern is used for EEG feature extraction. Then penalty factor and kernel function of SVM are optimized by ABC algorithm. Finally, the optimized SVM classifiers is trained and tested by two kinds of EEG data of right foot and right hand movements. The final results show that the accuracy of ABCSVM classifier for EEG classification is averagely 2.5% higher than that of non-parameter-optimized SVM classifier, which proved that the proposed algorithm is feasibility and achieves a high accuracy in motor imagery EEG recognition.

相似文献/References:

[1]杨 菲,郭旭东,翟 刚.用于胶囊内窥镜方位求解的LM人工蜂群算法[J].中国医学物理学杂志,2015,32(03):322.[doi:10.3969/j.issn.1005-202X.2015.03.005]
[2]王怡玲,覃玉荣,郭湛超,等.基于不同闪烁频率光刺激的脑电压变化研究[J].中国医学物理学杂志,2014,31(05):5184.[doi:10.3969/j.issn.1005-202X.2014.05.019]
[3]杨建平,张德乾,吕敬祥,等.操作发起过程多脑区协作的脑电谱熵特征[J].中国医学物理学杂志,2016,33(1):44.[doi:DOI:10.3969/j.issn.1005-202X.2016.01.010]
 [J].Chinese Journal of Medical Physics,2016,33(9):44.[doi:DOI:10.3969/j.issn.1005-202X.2016.01.010]
[4]崔招焕,等.大鼠癫痫脑电信号采集[J].中国医学物理学杂志,2016,33(2):118.[doi:10.3969/j.issn.1005-202X.2016.02.003]
 [J].Chinese Journal of Medical Physics,2016,33(9):118.[doi:10.3969/j.issn.1005-202X.2016.02.003]
[5]顾家军,叶继伦.麻醉深度监测中脑电信号特征提取方法[J].中国医学物理学杂志,2016,33(2):157.[doi:10.3969/j.issn.1005-202X.2016.02.010]
 [J].Chinese Journal of Medical Physics,2016,33(9):157.[doi:10.3969/j.issn.1005-202X.2016.02.010]
[6]刘岩,李幼军,陈萌. 基于固有模态分解和深度学习的抑郁症脑电信号分类分析[J].中国医学物理学杂志,2017,34(9):963.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.021]
 [J].Chinese Journal of Medical Physics,2017,34(9):963.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.021]
[7]刘畅,覃玉荣,时文健.视听觉刺激下大脑头皮电位空间变化特性[J].中国医学物理学杂志,2018,35(10):1225.[doi:DOI:10.3969/j.issn.1005-202X.2018.010.023]
 LIU Chang,QIN Yurong,SHI Wenjian. Spatial variation characteristics of scalp potentials under audiovisual stimuli[J].Chinese Journal of Medical Physics,2018,35(9):1225.[doi:DOI:10.3969/j.issn.1005-202X.2018.010.023]
[8]周杰,杨国雨,徐涛. 基于空间频率与时间序列信息的多类运动想象脑电分类[J].中国医学物理学杂志,2019,36(1):81.[doi:DOI:10.3969/j.issn.1005-202X.2019.01.016]
 ZHOU Jie,YANG Guoyu,XU Tao. Classification of multi-class motor imagery EEG data based on spatial frequency and time-series information[J].Chinese Journal of Medical Physics,2019,36(9):81.[doi:DOI:10.3969/j.issn.1005-202X.2019.01.016]
[9]李冬,金韬,冯智英,等.基于脑电信号的疼痛强度识别方法研究[J].中国医学物理学杂志,2019,36(7):836.[doi:DOI:10.3969/j.issn.1005-202X.2019.07.017]
 LI Dong,JIN Tao,FENG Zhiying,et al.Pain intensity recognition based on EEG signals[J].Chinese Journal of Medical Physics,2019,36(9):836.[doi:DOI:10.3969/j.issn.1005-202X.2019.07.017]
[10]冯琴昌.基于OpenBCI与OpenViBE的脑机接口设计[J].中国医学物理学杂志,2020,37(2):210.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.014]
 FENG Qinchang.Design of brain-computer interface based on OpenBCI and OpenViBE[J].Chinese Journal of Medical Physics,2020,37(9):210.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.014]

备注/Memo

备注/Memo:
【收稿日期】2018-03-04 【基金项目】国家自然科学基金(61372023);浙江省自然科学基金 (LY17F030021) 【作者简介】马玉良,博士,副教授,主要研究方向:生物信号检测与处 理、仿生假肢及其控制、智能控制等,E-mail : mayuliang@hdu.edu.cn
更新日期/Last Update: 2018-09-28