[1]李长胜,王瑜,肖洪兵,等.基于随机森林算法的阿尔茨海默症医学影像分类[J].中国医学物理学杂志,2020,37(8):1005-1009.[doi:DOI:10.3969/j.issn.1005-202X.2020.08.013]
 LI Changsheng,WANG Yu,XIAO Hongbing,et al.Medical image classification for Alzheimers disease diagnosis based on random forest algorithm[J].Chinese Journal of Medical Physics,2020,37(8):1005-1009.[doi:DOI:10.3969/j.issn.1005-202X.2020.08.013]
点击复制

基于随机森林算法的阿尔茨海默症医学影像分类()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
37
期数:
2020年第8期
页码:
1005-1009
栏目:
医学影像物理
出版日期:
2020-08-27

文章信息/Info

Title:
Medical image classification for Alzheimers disease diagnosis based on random forest algorithm
文章编号:
1005-202X(2020)08-1005-05
作者:
李长胜王瑜肖洪兵邢素霞
北京工商大学计算机与信息工程学院, 北京 100048
Author(s):
LI Changsheng WANG Yu XIAO Hongbing XING Suxia
School of Computer and Information Engineering, Beijing Technology and Business University, Beijing 100048, China
关键词:
阿尔茨海默症功能磁共振成像随机森林特征选择
Keywords:
Keywords: Alzheimers disease functional magnetic resonance imaging random forest feature selection
分类号:
R318;R455.2
DOI:
DOI:10.3969/j.issn.1005-202X.2020.08.013
文献标志码:
A
摘要:
为实现阿尔茨海默症(AD)的医学影像分类,辅助医生对患者的病情进行准确判断,本研究对采集的34名AD患者、35名轻度认知障碍患者和35名正常对照组成员的功能磁共振影像进行特征提取和分类,具体思路包括:首先利用皮尔逊相关系数计算脑区之间的功能连接,然后采用随机森林算法对被试不同脑区之间的功能连接进行重要性度量及特征选择,最后使用支持向量机分类器进行分类,利用十倍交叉验证估算分类准确率。实验结果显示,随机森林算法可以对功能连接特征进行有效分析,同时得到AD发病过程的异常脑区,基于随机森林和SVM建立的分类模型对AD、轻度认知障碍的识别具有较好的效果,分类准确率可达90.68%,相关结论可以为AD的早期临床诊断提供客观参照。 【关键词】阿尔茨海默症;功能磁共振成像;随机森林;特征选择
Abstract:
Abstract: For accurately classifying the medical images of Alzheimers disease (AD) and assisting the doctors in making an accurate diagnosis of the patients condition, a computer-aided diagnosis method is proposed based on random forest algorithm. The functional magnetic resonance imaging (fMRI) data of 34 AD patients, 35 patients with mild cognitive impairment (MCI) and 35 normal controls are collected for feature extraction and classification. Firstly, the functional connections between different brain regions are calculated using Pearson correlation coefficient. Then the importance of the functional connections between different brain regions is assessed and important features are selected by random forest algorithm. Finally, support vector machine classifier is used for classification, and ten-fold cross-validation for estimating the classification accuracy. The experimental results show that random forest algorithm can be use to effectively analyze the functional connection characteristics and obtain the abnormal brain regions of AD pathogenesis. The classification model based on random forest and support vector machine has a good effect on the recognition of AD and MCI, with a classification accuracy of 90.68%. The related experimental results provide an objective reference for the early clinical diagnosis of AD.

相似文献/References:

[1]夏丽坤,江桂华,汪天悦,等.基于局部一致性方法的广泛性焦虑障碍患者静息态功能磁共振成像[J].中国医学物理学杂志,2016,33(1):30.[doi:DOI:10.3969/j.issn.1005-202X.2016.01.007]
 [J].Chinese Journal of Medical Physics,2016,33(8):30.[doi:DOI:10.3969/j.issn.1005-202X.2016.01.007]
[2]梁思,董涛,王慧,等.一种基于功能磁共振的味觉刺激装置的设计与验证[J].中国医学物理学杂志,2016,33(1):76.[doi:10.3969/j.issn.1005-202X.2016.01.017]
[3]陈东太郎,曾卫明.基于功能磁共振成像分析不同眼睛状态下低频振幅比[J].中国医学物理学杂志,2016,33(6):588.[doi:10.3969/j.issn.1005-202X.2016.06.011]
[4]刘迎军,董健卫,杨志景,等.Hurst指数在功能磁共振成像静息态数据中的应用[J].中国医学物理学杂志,2016,33(8):783.[doi:10.3969/j.issn.1005-202X.2016.08.006]
 [J].Chinese Journal of Medical Physics,2016,33(8):783.[doi:10.3969/j.issn.1005-202X.2016.08.006]
[5]刘迎军,杨志景,李淑龙.静息态功能磁共振成像数据中几个常用指标的相关性[J].中国医学物理学杂志,2017,34(1):26.[doi:10.3969/j.issn.1005-202X.2017.01.006]
 [J].Chinese Journal of Medical Physics,2017,34(8):26.[doi:10.3969/j.issn.1005-202X.2017.01.006]
[6]魏明翔,高维佳,焦青,等. 青少年双相障碍缓解相患者功能磁共振成像低频振幅研究[J].中国医学物理学杂志,2017,34(3):314.[doi:10.3969/j.issn.1005-202X.2017.03.019]
 [J].Chinese Journal of Medical Physics,2017,34(8):314.[doi:10.3969/j.issn.1005-202X.2017.03.019]
[7]付令,武杰.独立成分分析在视觉运动核磁共振数据处理中的应用[J].中国医学物理学杂志,2017,34(7):676.[doi:10.3969/j.issn.1005-202X.2017.07.005]
 [J].Chinese Journal of Medical Physics,2017,34(8):676.[doi:10.3969/j.issn.1005-202X.2017.07.005]
[8]陈浩然,高维佳,焦青,等.青少年双相障碍缓解相患者功能磁共振成像局域一致性研究[J].中国医学物理学杂志,2018,35(1):47.[doi:DOI:10.3969/j.issn.1005-202X.2018.01.010]
 CHEN Haoran,GAO Weijia,JIAO Qing,et al. Regional homogeneity in euthymic patients with pediatric bipolar disorder: a resting-state functional magnetic resonance imaging study[J].Chinese Journal of Medical Physics,2018,35(8):47.[doi:DOI:10.3969/j.issn.1005-202X.2018.01.010]
[9]周文,王瑜,肖红兵,等. 基于KPCA算法的阿尔茨海默症辅助诊断[J].中国医学物理学杂志,2018,35(4):404.[doi:DOI:10.3969/j.issn.1005-202X.2018.04.007]
 ZHOU Wen,WANG Yu,XIAO Hongbing,et al. Assisted diagnosis of Alzheimer’s disease based on KPCA algorithm[J].Chinese Journal of Medical Physics,2018,35(8):404.[doi:DOI:10.3969/j.issn.1005-202X.2018.04.007]
[10]王伟茜,刘新凤,曹卫芳,等.2型糖尿病磁共振成像静息态低频振幅变化及其与认知受损的相关性[J].中国医学物理学杂志,2018,35(5):543.[doi:DOI:10.3969/j.issn.1005-202X.2018.05.009]
 WANG Weiqian,LIU Xinfeng,CAO Weifang,et al.Altered fractional amplitude of low-frequency fluctuation of fMRI signals and its correlation with cognitive impairment in type 2 diabetes mellitus patients[J].Chinese Journal of Medical Physics,2018,35(8):543.[doi:DOI:10.3969/j.issn.1005-202X.2018.05.009]
[11]李长胜,王瑜,肖洪兵,等.KPCA和Adaboost算法在阿尔茨海默症功能磁共振影像分类中的应用[J].中国医学物理学杂志,2019,36(7):784.[doi:DOI:10.3969/j.issn.1005-202X.2019.07.008]
 LI Changsheng,WANG Yu,XIAO Hongbing,et al.Application of KPCA and Adaboost algorithm in the classification of functional magneticresonance images of Alzheimer’s disease[J].Chinese Journal of Medical Physics,2019,36(8):784.[doi:DOI:10.3969/j.issn.1005-202X.2019.07.008]

备注/Memo

备注/Memo:
【收稿日期】2020-02-01 【基金项目】国家自然科学基金(61671028);国家重大科技研发子课题(ZLJC6 03-5-1);北京工商大学校级两科培育基金项目(19008001270) 【作者简介】李长胜,硕士研究生,研究方向:计算机视觉、医学图像处理、模式识别,E-mail: 516795305@qq.com 【通信作者】王瑜,博士,副教授,研究方向:计算机视觉、医学图像处理、模式识别,E-mail: wangyu@btbu.edu.cn
更新日期/Last Update: 2020-08-27