[1]邓煌森,刘捷,闫炼,等.基于深度卷积自编码器的微波成像方法及其医学应用潜力[J].中国医学物理学杂志,2025,42(2):184-189.[doi:DOI:10.3969/j.issn.1005-202X.2025.02.007]
 DENG Huangsen,LIU Jie,YAN Lian,et al.Microwave imaging method based on deep convolutional autoencoder and its potential for medical application[J].Chinese Journal of Medical Physics,2025,42(2):184-189.[doi:DOI:10.3969/j.issn.1005-202X.2025.02.007]
点击复制

基于深度卷积自编码器的微波成像方法及其医学应用潜力()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
42
期数:
2025年第2期
页码:
184-189
栏目:
医学影像物理
出版日期:
2025-01-20

文章信息/Info

Title:
Microwave imaging method based on deep convolutional autoencoder and its potential for medical application
文章编号:
1005-202X(2025)02-0184-06
作者:
邓煌森刘捷闫炼朱光正宁旭秦明新陈明生
陆军军医大学生物医学工程与影像医学系, 重庆 400038
Author(s):
DENG Huangsen LIU Jie YAN Lian ZHU Guangzheng NING Xu QIN Mingxin CHEN Mingsheng
School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing 400038, China
关键词:
脑卒中微波成像深度学习卷积自编码器
Keywords:
Keywords: stroke microwave imaging deep learning convolutional autoencoder
分类号:
R318
DOI:
DOI:10.3969/j.issn.1005-202X.2025.02.007
文献标志码:
A
摘要:
开发一个基于深度学习的微波成像模型,将散射电场直接映射为目标物体介电特性分布图像,并探索其在医学应用的潜在价值。采用二维时域有限差分法进行数值模拟来获取散射电场数据集;构建基于深度卷积自编码器成像模型,对两类目标物体进行成像研究;使用相对误差进行成像结果的定量评估,并分析成像模型对不同卒中类型的区分能力。结果表明基于深度卷积自编码器的成像网络在处理两种数值模型时均展现出色的成像性能。对于简单物体,该模型能准确定位并初步重建物体形状,平均相对误差为0.301 2;对于卒中模型,能较好地重建卒中区域的位置和形状,初步重建其他脑组织,平均相对误差为0.077 8。基于深度卷积自编码器的微波成像网络对快速准确重建图像很有前景,脑卒中检测的数值示例表明该方法在生物医学成像领域具有显著的应用潜力。
Abstract:
A deep learning based microwave imaging model which can directly map the scattered electric field to the dielectric property distribution image of the target object is developed, and its potential for medical applications is explored. The two-dimensional time-domain finite difference method is used for numerical simulation to obtain a dataset of scattered electric fields a deep convolutional autoencoder based imaging model is constructed to perform imaging studies on two types of target objects the imaging results are quantitatively evaluated using relative error, and the models ability to distinguish different types of strokes is also analyzed. The results show that the imaging network based on deep convolutional autoencoder exhibits excellent imaging performance when processing both numerical models. For simple objects, the model can accurately locate and preliminarily reconstruct the shape of the object, with an average relative error of 0.301 2, while for the stroke models, it can effectively reconstruct the location and shape of the stroke area, and preliminarily reconstruct other brain tissues, with an average relative error of 0.077 8. The microwave imaging network based on deep convolutional autoencoder has great promise for fast and accurate image reconstruction, and the numerical example of stroke detection demonstrates its significant application potential in biomedical imaging.

相似文献/References:

[1]高丹丹,吴宝明,何庆华,等.融合视听觉引导肌电反馈与生物电刺激的新型神经康复仪的研制[J].中国医学物理学杂志,2014,31(04):5085.[doi:10.3969/j.issn.1005-202X.2014.04.024]
[2]刘佳琳,王帅,张立新.经颅磁刺激促进脑卒中功能恢复的作用机制[J].中国医学物理学杂志,2021,38(10):1279.[doi:DOI:10.3969/j.issn.1005-202X.2021.10.017]
 LIU Jialin,WANG Shuai,ZHANG Lixin.Mechanism of transcranial magnetic stimulation in promoting functional recovery in stroke[J].Chinese Journal of Medical Physics,2021,38(2):1279.[doi:DOI:10.3969/j.issn.1005-202X.2021.10.017]
[3]李耀志,谢艺才.磁共振颅颈一体化高分辨血管壁成像评价颈动脉斑块负荷与脑卒中的关系[J].中国医学物理学杂志,2022,39(3):328.[doi:DOI:10.3969/j.issn.1005-202X.2022.03.012]
 LI Yaozhi,XIE Yicai.Relationship between carotid plaques burden and stroke: an evaluation by high-resolution craniocervical MR vessel wall imaging[J].Chinese Journal of Medical Physics,2022,39(2):328.[doi:DOI:10.3969/j.issn.1005-202X.2022.03.012]
[4]夏渊,卢悦,李爱玲,等.θ节律刺激对脑卒中后患者上肢运动功能和日常生活能力影响的Meta分析[J].中国医学物理学杂志,2022,39(3):341.[doi:DOI:10.3969/j.issn.1005-202X.2022.03.014]
 XIA Yuan,LU Yue,LI Ailing,et al.Effects of theta burst stimulation on upper limb motor function and activities of daily living in patients after stroke: a Meta analysis[J].Chinese Journal of Medical Physics,2022,39(2):341.[doi:DOI:10.3969/j.issn.1005-202X.2022.03.014]
[5]徐亚辉,张晓芸,张冉,等.CT定位下经颅磁刺激对卒中后运动功能障碍的治疗效果[J].中国医学物理学杂志,2022,39(8):1015.[doi:DOI:10.3969/j.issn.1005-202X.2022.08.017]
 XU Yahui,ZHANG Xiaoyun,ZHANG Ran,et al.Therapeutic effect of transcranial magnetic stimulation under CT localization on poststroke motor dysfunction[J].Chinese Journal of Medical Physics,2022,39(2):1015.[doi:DOI:10.3969/j.issn.1005-202X.2022.08.017]
[6]李文豪,吴凯,李懿,等.自动康复评定方法在脑卒中运动功能评定中的应用[J].中国医学物理学杂志,2023,40(7):876.[doi:DOI:10.3969/j.issn.1005-202X.2023.07.014]
 LI Wenhao,,et al.Application of automatic rehabilitation evaluation in motor function assessment in stroke patients: a review[J].Chinese Journal of Medical Physics,2023,40(2):876.[doi:DOI:10.3969/j.issn.1005-202X.2023.07.014]
[7]王雁南,周俊林,那飞扬,等.基于低辐射剂量全脑CT灌注评估急性缺血性脑卒中侧支循环的研究[J].中国医学物理学杂志,2023,40(8):950.[doi:DOI:10.3969/j.issn.1005-202X.2023.08.005]
 WANG Yannan,ZHOU Junlin,et al.Collateral circulation assessment in acute ischemic stroke based on low dose whole brain CT perfusion[J].Chinese Journal of Medical Physics,2023,40(2):950.[doi:DOI:10.3969/j.issn.1005-202X.2023.08.005]
[8]周昱汐,贾守强,聂生东.计算机辅助诊断脑血管病的应用[J].中国医学物理学杂志,2023,40(9):1167.[doi:DOI:10.3969/j.issn.1005-202X.2023.09.018]
 ZHOU Yuxi,JIA Shouqiang,NIE Shengdong.Application of computer-aided diagnosis for cerebrovascular diseases[J].Chinese Journal of Medical Physics,2023,40(2):1167.[doi:DOI:10.3969/j.issn.1005-202X.2023.09.018]
[9]王冲,周静,李文豪,等.脑电在脑卒中运动功能评估中的应用研究进展[J].中国医学物理学杂志,2023,40(10):1309.[doi:DOI:10.3969/j.issn.1005-202X.2023.10.020]
 WANG Chong,ZHOU Jing,LI Wenhao,et al.Application of electroencephalography in assessment of motor function in stroke patients: a review[J].Chinese Journal of Medical Physics,2023,40(2):1309.[doi:DOI:10.3969/j.issn.1005-202X.2023.10.020]
[10]高晨洋,吴凯,李文豪,等.EEG-fNIRS技术在神经精神疾病研究中的应用进展[J].中国医学物理学杂志,2024,41(3):348.[doi:DOI:10.3969/j.issn.1005-202X.2024.03.013]
 GAO Chenyang,WU Kai,,et al.Advances in application of EEG-fNIRS technology in researches on neuropsychiatric disorders[J].Chinese Journal of Medical Physics,2024,41(2):348.[doi:DOI:10.3969/j.issn.1005-202X.2024.03.013]

备注/Memo

备注/Memo:
【收稿日期】2024-07-22 【基金项目】国家自然科学基金(62171444) 【作者简介】邓煌森,硕士,研究方向:脑卒中微波成像和电磁检测,E-mail: Chris_324@163.com 【通信作者】陈明生,博士,副教授,研究方向:智能脑损伤电磁检测,E-mail: chenms83@163.com
更新日期/Last Update: 2025-01-22