[1]梁建嫦,吴锦锋,张泳欣,等.基于影像学和血清学特征构建列线图模型对PSA 4~10 ng mL患者穿刺阳性的预测价值[J].中国医学物理学杂志,2024,41(12):1494-1500.[doi:DOI:10.3969/j.issn.1005-202X.2024.12.006]
 LIANG Jianchang,WU Jinfeng,ZHANG Yongxin,et al.Predictive value of a nomogram model constructed based on imaging and serological characteristics for prostate biopsy positivity in patients with PSA levels of 4-10 ng mL[J].Chinese Journal of Medical Physics,2024,41(12):1494-1500.[doi:DOI:10.3969/j.issn.1005-202X.2024.12.006]
点击复制

基于影像学和血清学特征构建列线图模型对PSA 4~10 ng mL患者穿刺阳性的预测价值()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
41卷
期数:
2024年第12期
页码:
1494-1500
栏目:
医学影像物理
出版日期:
2024-12-17

文章信息/Info

Title:
Predictive value of a nomogram model constructed based on imaging and serological characteristics for prostate biopsy positivity in patients with PSA levels of 4-10 ng mL
文章编号:
1005-202X(2024)12-1494-07
作者:
梁建嫦1吴锦锋2张泳欣25沈俊鑫3陈振杰2谭健2钟睿2赵卫4卢扬柏2袁润强2
1.云浮市中医院检验科, 广东 云浮 527300; 2.中山市人民医院泌尿外科, 广东 中山 528403; 3.广东医科大学第一临床医学院,广东 湛江524023; 4.南方医科大学公共卫生学院, 广东 广州 510515; 5.中山市人民医院影像中心, 广东 中山 528403
Author(s):
LIANG Jianchang1 WU Jinfeng2 ZHANG Yongxin2 5 SHEN Junxin3 CHEN Zhenjie2 TAN Jian2 ZHONG Rui2 ZHAO Wei4 LU Yangbai2 YUAN Runqiang2
1. Department of Clinical Laboratory, Yunfu Hospital of TCM, Yunfu 527300, China 2.Department of Urology, Zhongshan City Peoples Hospital, Zhongshan 528403, China 3. The First Clinical Medical College, Guangdong Medical University, Zhanjiang 524023, China 4. School of Public Health, Southern Medical University, Guangzhou 510515, China 5. Imaging Center,Zhongshan City Peoples Hospital, Zhongshan 528403, China
关键词:
前列腺癌列线图模型前列腺特异性抗原预测模型影像学血清学
Keywords:
Keywords: prostate cancer nomogram model prostate specific antigen predictive model imaging serology
分类号:
R318;R737.25
DOI:
DOI:10.3969/j.issn.1005-202X.2024.12.006
文献标志码:
A
摘要:
目的:探讨基于影像学联合前列腺特异性抗原(PSA)及其相关参数构建的列线图模型对PSA 4~10 ng/mL患者穿刺阳性的预测价值。方法:回顾性分析2018年1月至2023年12月191例在中山市人民医院和/或云浮市中医院行血清学PSA及相关指标检测并接受经直肠超声穿刺前列腺首次活检的患者的临床血清学和影像学资料,应用多因素Logistic回归分析前列腺癌相关独立风险因素,构建PSA 4~10 ng/mL患者的列线图模型,使用受试者工作特征曲线、校准曲线和决策曲线对模型进行评估。结果:多因素Logistic回归分析结果显示游离PSA、前列腺体积、移行带体积、PSA密度及前列腺影像报告和数据系统(PI-RADS v2.1)为前列腺癌的独立风险因素。基于这些显著变量构建的融合模型表现最佳,AUC为0.750(95%CI:0.678~0.821),敏感性为72.7%,特异性为77.2%,准确性为74.9%。校准曲线显示该模型预测的前列腺癌概率与病理结果有良好的一致性;决策曲线分析进一步证明该模型具有较高的临床应用价值。结论:构建的列线图及预测模型在术前能较好地预测PSA 4~10 ng/mL患者前列腺癌的风险,为临床医师提供直观的预估工具,有助于根据前列腺癌发生的风险调整治疗计划,从而优化患者的生存结果。
Abstract:
Abstract: Objective To investigate the predictive value of a nomogram model constructed based on imaging combined with prostate-specific antigen (PSA) and its related parameters for biopsy in patients with PSA levels of 4-10 ng/mL. Methods The serological and imaging data of 191 patients who were detected for PSA and related indicators and underwent the first biopsy of prostate by transrectal ultrasound at Zhongshan City Peoples Hospital and/or Yunfu Hospital of TCM from January 2018 to December 2023 were analyzed retrospectively. Multivariate Logistic regression identified independent risk factors for prostate cancer, and a nomogram model was developed for patients with PSA levels of 4-10 ng/mL. The predictive performance of the model was evaluated using receiver operating characteristic (ROC) curves, calibration curves, and decision curves. Results The multivariate Logistic regression analysis showed that free PSA, prostate volume, transition zone volume, PSA density, and the prostate imaging-reporting and data system (PI-RADS v2.1) score were independent risk factors for prostate cancer. The model incorporating these significant variables demonstrated the best performance, with an area under the curve (AUC) of 0.750 (95% CI: 0.678-0.821), sensitivity of 72.7%, specificity of 77.2%, and accuracy of 74.9%. The calibration curve indicated good agreement between the predicted probability and the actual probability of prostate cancer and the decision curve analysis further confirmed that the model had high clinical utility. Conclusion The constructed nomogram prediction model can effectively estimate the preoperative risk of prostate cancer in patients with PSA levels of 4-10 ng/mL, providing clinicians with an intuitive tool to adjust treatment plans based on the assessed risk, thereby optimizing patient outcomes.

相似文献/References:

[1]董晓庆,胡杰,陆春花,等.前列腺癌图像引导放射治疗精准度评估[J].中国医学物理学杂志,2016,33(7):658.[doi:10.3969/j.issn.1005-202X.2016.07.003]
 [J].Chinese Journal of Medical Physics,2016,33(12):658.[doi:10.3969/j.issn.1005-202X.2016.07.003]
[2]倪千喜,Pei-Fong WONG,张九堂.不同治疗床在调强放射治疗和容积旋转放射治疗中的剂量影响分析[J].中国医学物理学杂志,2016,33(11):1116.[doi:10.3969/j.issn.1005-202X.2016.11.007]
 [J].Chinese Journal of Medical Physics,2016,33(12):1116.[doi:10.3969/j.issn.1005-202X.2016.11.007]
[3]曹洋森,于春山,孙永健,等.Monaco两种优化模式在前列腺癌容积旋转调强中的剂量学比较[J].中国医学物理学杂志,2016,33(11):1126.[doi:10.3969/j.issn.1005-202X.2016.11.009]
 [J].Chinese Journal of Medical Physics,2016,33(12):1126.[doi:10.3969/j.issn.1005-202X.2016.11.009]
[4]鞠孟阳,史玉静,李金凯,等. 直肠内气腔对前列腺癌放疗计划的影响[J].中国医学物理学杂志,2018,35(8):879.[doi:DOI:10.3969/j.issn.1005-202X.2018.08.003]
 JU Mengyang,SHI Yujing,LI Jinkai,et al. Effects of gas cavity in rectum on radiotherapy plan for prostate cancer[J].Chinese Journal of Medical Physics,2018,35(12):879.[doi:DOI:10.3969/j.issn.1005-202X.2018.08.003]
[5]张君席,刘振湘,张平,等. 基于太赫兹光谱和成像的前列腺癌检测[J].中国医学物理学杂志,2019,36(5):556.[doi:DOI:10.3969/j.issn.1005-202X.2019.05.012]
 ZHANG Junxi,LIU Zhenxiang,ZHANG Ping,et al. Detection of prostate cancer based on terahertz spectroscopy and imaging[J].Chinese Journal of Medical Physics,2019,36(12):556.[doi:DOI:10.3969/j.issn.1005-202X.2019.05.012]
[6]张祥斌,李光俊,张英杰,等. 基于形变配准算法评估前列腺癌分次间剂量的可行性研究[J].中国医学物理学杂志,2019,36(9):995.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.001]
 ZHANG Xiangbin,LI Guangjun,ZHANG Yingjie,et al. Feasibility of deformable image registration algorithm for interfractional dose calculation in radiotherapy for prostate cancer[J].Chinese Journal of Medical Physics,2019,36(12):995.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.001]
[7]徐伟,杨涛,解传滨,等. 质子点扫描技术与光子Tomotherapy在前列腺癌应用中的剂量学比较[J].中国医学物理学杂志,2019,36(10):1129.[doi:DOI:10.3969/j.issn.1005-202X.2019.10.003]
 XU Wei,YANG Tao,XIE Chuanbin,et al. Dosimetric comparison between single spot scanning of proton therapy and tomotherapy for prostate cancer[J].Chinese Journal of Medical Physics,2019,36(12):1129.[doi:DOI:10.3969/j.issn.1005-202X.2019.10.003]
[8]方春锋,解传滨,徐寿平,等.不同铅门模式下高危分期前列腺癌螺旋断层放射治疗剂量学比较[J].中国医学物理学杂志,2020,37(2):138.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.002]
 FANG Chunfeng,XIE Chuanbin,et al.Dosimetric study of helical tomotherapy for high-risk prostate cancer under different jaw modes[J].Chinese Journal of Medical Physics,2020,37(12):138.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.002]
[9]田龙,闫洁诚,李明辉,等.利用多次采集计划CT和锥形束CT评价前列腺癌靶区运动相关性[J].中国医学物理学杂志,2021,38(2):172.[doi:DOI:10.3969/j.issn.1005-202X.2021.02.009]
 TIAN Long,YAN Jiecheng,LI Minghui,et al.Evaluating the correlation between pre- and in-treatment target displacements in prostate cancer radiotherapy by multiple acquisition planning CT and cone-beam CT[J].Chinese Journal of Medical Physics,2021,38(12):172.[doi:DOI:10.3969/j.issn.1005-202X.2021.02.009]
[10]潘兴晨,汪冬,胡丽琴.基于靶区与危及器官重叠度的自动治疗计划设计[J].中国医学物理学杂志,2021,38(10):1203.[doi:DOI:10.3969/j.issn.1005-202X.2021.10.004]
 PAN Xingchen,WANG Dong,HU Liqin.Automatic treatment planning based on the degree of overlap between OAR and PTV[J].Chinese Journal of Medical Physics,2021,38(12):1203.[doi:DOI:10.3969/j.issn.1005-202X.2021.10.004]

备注/Memo

备注/Memo:
【收稿日期】2024-10-26 【基金项目】国家重点研发计划(2018YFC1602206);广东省基础与应用基础研究基金(2022A1515220032);广东省医学科学技术研究基金(B2023195);中山市科技计划项目(2020B1073);中山市人民医院重大科研基金(BG20228249);中山市人民医院优秀青年项目(SG2023106);中山市第三批社会公益与基础研究项目(2023B3006) 【作者简介】梁建嫦,副主任技师,研究方向:免疫学检验,E-mail: m202413672507034@163.com 【通信作者】袁润强,博士,主任医师,研究方向:泌尿系肿瘤,E-mail: yuanrunqiang@yeah.net
更新日期/Last Update: 2024-12-20