[1]肖欣,高玉清,张建敏.基于原始肺音的端到端深度学习肺炎辅助诊断[J].中国医学物理学杂志,2025,42(2):274-280.[doi:DOI:10.3969/j.issn.1005-202X.2025.02.021]
 XIAO Xin,GAO Yuqing,ZHANG Jianmin.End-to-end deep learning for auxiliary diagnosis of pneumonia using original lung sounds[J].Chinese Journal of Medical Physics,2025,42(2):274-280.[doi:DOI:10.3969/j.issn.1005-202X.2025.02.021]
点击复制

基于原始肺音的端到端深度学习肺炎辅助诊断()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
42
期数:
2025年第2期
页码:
274-280
栏目:
医学人工智能
出版日期:
2025-01-20

文章信息/Info

Title:
End-to-end deep learning for auxiliary diagnosis of pneumonia using original lung sounds
文章编号:
1005-202X(2025)02-0274-07
作者:
肖欣高玉清张建敏
江汉大学人工智能学院, 湖北 武汉 430056
Author(s):
XIAO Xin GAO Yuqing ZHANG Jianmin
School of Artificial Intelligence, Jianghan University, Wuhan 430056, China
关键词:
原始肺音肺炎智能辅助诊断端到端学习DCL-Net
Keywords:
Keywords: original lung sound pneumonia intelligent auxiliary diagnosis end-to-end learning DCL-Net
分类号:
R318;R563.1
DOI:
DOI:10.3969/j.issn.1005-202X.2025.02.021
文献标志码:
A
摘要:
提出一种基于双路径不同卷积核的DCL-Net的端到端肺炎辅助诊断方法。该方法无需进行特征工程,将原始肺音信号直接输入模型,利用卷积核分别为1[?3和1[?5的双路径卷积网络,每个路径包含3个残差块,以便模型自动学习肺音信号不同尺度的特征,同时避免模型退化问题。为验证端到端方法的性能,将其与信号分析领域常用的梅尔倒谱图、短时傅里叶变换和小波变换这3种特征提取方法进行比较。结果显示,四分类任务(正常、普通、病重、病危)诊断准确率为61.4%,相比3种特征工程方法分别提高1.6%、5.0%和3.7%;二分类任务(正常、异常)诊断准确率为89.7%,相比3种特征工程方法分别提高11.0%、5.1%和11.2%。实验结果表明该方法可为肺炎病情评估提供更有效的诊断工具。
Abstract:
Abstract: An end-to-end auxiliary diagnosis method for pneumonia based on DCL-Net with dual-path of different convolutional kernels is proposed, in which no feature engineering is required, and the original lung sound signal is directly input into the model. The dual-path convolutional network with kernel sizes of 1*3 and 1*5, with each path containing 3 residual blocks, allows the model to automatically learn features of lung sounds at different scales while avoiding model degradation. The performance of the end-to-end method is validated through the comparisons with 3 commonly used feature extraction methods in signal analysis, namely Mel-spectrogram, short-time Fourier transform, and wavelet transform. The results show that the proposed method has a diagnostic accuracy of 61.4% for the 4-class classification task (normal, moderate, severe, critical), which is 1.6%, 5.0%, and 3.7% higher than the other 3 feature extraction methods, and the diagnostic accuracy is 89.7% for the binary classification task (normal or abnormal), which is 11.0%, 5.1%, and 11.2% higher than the other 3 feature engineering methods, demonstrating that it can serve as an effective diagnostic tool for pneumonia.

相似文献/References:

[1]申严,杨普查,卓宋明.床旁超声联合支气管镜在被动卧床肺炎患者住院管理评估指标中的价值[J].中国医学物理学杂志,2019,36(8):933.[doi:DOI:10.3969/j.issn.1005-202X.2019.08.014]
 SHEN Yan,YANG Pucha,ZHUO Songming.Value of bedside ultrasound combined with bronchoscopy in the index evaluation of inpatient management for bedridden patients with pneumonia[J].Chinese Journal of Medical Physics,2019,36(2):933.[doi:DOI:10.3969/j.issn.1005-202X.2019.08.014]
[2]陈静,于勇,段海峰,等.基于定量CT对新型冠状病毒肺炎肺部改变的纵向研究[J].中国医学物理学杂志,2020,37(4):445.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.009]
 CHEN Jing,YU Yong,DUAN Haifeng,et al.Longitudinal study of lung changes induced by COVID-19 based on quantitative CT[J].Chinese Journal of Medical Physics,2020,37(2):445.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.009]
[3]刘发明,江桂华,杨宁,等.新型冠状病毒肺炎的影像组学研究[J].中国医学物理学杂志,2020,37(4):463.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.012]
 LIU Faming,JIANG Guihua,YANG Ning,et al.Radiomics analysis on COVID-19[J].Chinese Journal of Medical Physics,2020,37(2):463.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.012]
[4]邓靓娜,薛彩强,林晓强,等.新型冠状病毒肺炎的影像学应用及进展[J].中国医学物理学杂志,2020,37(6):726.[doi:DOI:10.3969/j.issn.1005-202X.2020.06.013]
 DENG Liangna,,et al.Application progress of imaging in COVID-19[J].Chinese Journal of Medical Physics,2020,37(2):726.[doi:DOI:10.3969/j.issn.1005-202X.2020.06.013]
[5]韩冬,于勇,贺太平,等.基于密度分布特征及机器学习诊断COVID-19相关性肺炎[J].中国医学物理学杂志,2021,38(3):387.[doi:DOI:10.3969/j.issn.1005-202X.2021.03.022]
 HAN Dong,YU Yong,HE Taiping,et al.Diagnosis of COVID-19 associated pneumonia based on density distribution features and machine learning[J].Chinese Journal of Medical Physics,2021,38(2):387.[doi:DOI:10.3969/j.issn.1005-202X.2021.03.022]
[6]董芳芬,陈群,李诺兮,等.基于深度学习的儿童肺炎检测模型建立及应用[J].中国医学物理学杂志,2022,39(12):1579.[doi:DOI:10.3969/j.issn.1005-202X.2022.12.020]
 DONG Fangfen,CHEN Qun,et al.Establishment and application of a deep learning-based model for pneumonia detection in children[J].Chinese Journal of Medical Physics,2022,39(2):1579.[doi:DOI:10.3969/j.issn.1005-202X.2022.12.020]

备注/Memo

备注/Memo:
【收稿日期】2024-10-26 【基金项目】武汉市科技计划项目(2020020601012320);老年医学与现代康养学科(群)项目([鄂教研函[2021]5号]) 【作者简介】肖欣,硕士研究生,研究方向:智慧医疗和人工智能应用,E-mail: bellaxiao129@163.com 【通信作者】张建敏,博士,教授,研究方向:智慧医疗和人工智能应用,E-mail: zhangjm@jhun.edu.cn
更新日期/Last Update: 2025-01-22