[1]王云祥,杨碧凝,刘宇翔,等.利用基于图像配准的深度学习方法提高磁共振引导前列腺癌放疗自动勾画精度[J].中国医学物理学杂志,2024,41(6):667-672.[doi:DOI:10.3969/j.issn.1005-202X.2024.06.002]
 WANG Yunxiang,YANG Bining,LIU Yuxiang,et al.Improving auto-segmentation accuracy for online magnetic resonance imaging-guided prostate radiotherapy by registration-based deep learning method[J].Chinese Journal of Medical Physics,2024,41(6):667-672.[doi:DOI:10.3969/j.issn.1005-202X.2024.06.002]
点击复制

利用基于图像配准的深度学习方法提高磁共振引导前列腺癌放疗自动勾画精度()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
41卷
期数:
2024年第6期
页码:
667-672
栏目:
医学放射物理
出版日期:
2024-06-25

文章信息/Info

Title:
Improving auto-segmentation accuracy for online magnetic resonance imaging-guided prostate radiotherapy by registration-based deep learning method
文章编号:
1005-202X(2024)06-0667-06
作者:
王云祥杨碧凝刘宇翔朱冀卢宁宁戴建荣门阔
国家癌症中心/国家肿瘤临床医学研究中心/中国医学科学院北京协和医学院肿瘤医院放射治疗科, 北京 100021
Author(s):
WANG Yunxiang YANG Bining LIU Yuxiang ZHU Ji LU Ning-Ning DAI Jianrong MEN Kuo
National Cancer Center/National Clinical Research Center for Cancer/Department of Radiation Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
关键词:
前列腺癌磁共振引导在线自适应放射治疗图像配准深度学习自动勾画
Keywords:
Keywords: prostate cancer online magnetic resonance imaging-guided adaptive radiotherapy image registration deep learning auto-segmentation
分类号:
R318;TP391;R811.1
DOI:
DOI:10.3969/j.issn.1005-202X.2024.06.002
文献标志码:
A
摘要:
目的:改进在线磁共振图像中前列腺靶区和危及器官的自动勾画性能,提高磁共振引导前列腺癌在线自适应放射治疗的效率。方法:对40例接受磁共振引导在线自适应放射治疗的前列腺癌患者进行回顾性研究,其中训练集25例、验证集5例、测试集10例。将模拟定位图像与相应勾画信息和在线磁共振图像进行配准后输入深度学习网络,实现对磁共振图像的自动勾画,并与形变配准方法和单MR输入的深度学习方法进行比较。结果:本文方法的自动勾画准确性整体优于形变配准方法和单MR输入的深度学习方法,临床靶区、膀胱、直肠和左、右侧股骨头的平均Dice相似性指数分别达0.896、0.941、0.840、0.943和0.940。结论:本文方法能有效提高磁共振引导前列腺癌在线自适应放射治疗中自动勾画的准确性和效率。
Abstract:
Abstract: Objective To improve the performance of auto-segmentation of prostate target area and organs-at-risk in online magnetic resonance image and enhance the efficiency of magnetic resonance imaging-guided adaptive radiotherapy (MRIgART) for prostate cancer. Methods A retrospective study was conducted on 40 patients who underwent MRIgART for prostate cancer, including 25 in the training set, 5 in the validation set, and 10 in the test set. The planning CT images and corresponding contours, along with online MR images, were registered and input into a deep learning network for online MR image auto-segmentation. The proposed method was compared with deformable image registration (DIR) method and single-MR-input deep learning (SIDL) method. Results The overall accuracy of the proposed method for auto-segmentation was superior to those of DIR and SIDL methods, with average Dice similarity coefficients of 0.896 for clinical target volume, 0.941 for bladder, 0.840 for rectum, 0.943 for left femoral head and 0.940 for right femoral head, respectively. Conclusion The proposed method can effectively improve the accuracy and efficiency of auto-segmentation in MRIgART for prostate cancer.

相似文献/References:

[1]董晓庆,胡杰,陆春花,等.前列腺癌图像引导放射治疗精准度评估[J].中国医学物理学杂志,2016,33(7):658.[doi:10.3969/j.issn.1005-202X.2016.07.003]
 [J].Chinese Journal of Medical Physics,2016,33(6):658.[doi:10.3969/j.issn.1005-202X.2016.07.003]
[2]倪千喜,Pei-Fong WONG,张九堂.不同治疗床在调强放射治疗和容积旋转放射治疗中的剂量影响分析[J].中国医学物理学杂志,2016,33(11):1116.[doi:10.3969/j.issn.1005-202X.2016.11.007]
 [J].Chinese Journal of Medical Physics,2016,33(6):1116.[doi:10.3969/j.issn.1005-202X.2016.11.007]
[3]曹洋森,于春山,孙永健,等.Monaco两种优化模式在前列腺癌容积旋转调强中的剂量学比较[J].中国医学物理学杂志,2016,33(11):1126.[doi:10.3969/j.issn.1005-202X.2016.11.009]
 [J].Chinese Journal of Medical Physics,2016,33(6):1126.[doi:10.3969/j.issn.1005-202X.2016.11.009]
[4]鞠孟阳,史玉静,李金凯,等. 直肠内气腔对前列腺癌放疗计划的影响[J].中国医学物理学杂志,2018,35(8):879.[doi:DOI:10.3969/j.issn.1005-202X.2018.08.003]
 JU Mengyang,SHI Yujing,LI Jinkai,et al. Effects of gas cavity in rectum on radiotherapy plan for prostate cancer[J].Chinese Journal of Medical Physics,2018,35(6):879.[doi:DOI:10.3969/j.issn.1005-202X.2018.08.003]
[5]张君席,刘振湘,张平,等. 基于太赫兹光谱和成像的前列腺癌检测[J].中国医学物理学杂志,2019,36(5):556.[doi:DOI:10.3969/j.issn.1005-202X.2019.05.012]
 ZHANG Junxi,LIU Zhenxiang,ZHANG Ping,et al. Detection of prostate cancer based on terahertz spectroscopy and imaging[J].Chinese Journal of Medical Physics,2019,36(6):556.[doi:DOI:10.3969/j.issn.1005-202X.2019.05.012]
[6]张祥斌,李光俊,张英杰,等. 基于形变配准算法评估前列腺癌分次间剂量的可行性研究[J].中国医学物理学杂志,2019,36(9):995.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.001]
 ZHANG Xiangbin,LI Guangjun,ZHANG Yingjie,et al. Feasibility of deformable image registration algorithm for interfractional dose calculation in radiotherapy for prostate cancer[J].Chinese Journal of Medical Physics,2019,36(6):995.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.001]
[7]徐伟,杨涛,解传滨,等. 质子点扫描技术与光子Tomotherapy在前列腺癌应用中的剂量学比较[J].中国医学物理学杂志,2019,36(10):1129.[doi:DOI:10.3969/j.issn.1005-202X.2019.10.003]
 XU Wei,YANG Tao,XIE Chuanbin,et al. Dosimetric comparison between single spot scanning of proton therapy and tomotherapy for prostate cancer[J].Chinese Journal of Medical Physics,2019,36(6):1129.[doi:DOI:10.3969/j.issn.1005-202X.2019.10.003]
[8]方春锋,解传滨,徐寿平,等.不同铅门模式下高危分期前列腺癌螺旋断层放射治疗剂量学比较[J].中国医学物理学杂志,2020,37(2):138.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.002]
 FANG Chunfeng,XIE Chuanbin,et al.Dosimetric study of helical tomotherapy for high-risk prostate cancer under different jaw modes[J].Chinese Journal of Medical Physics,2020,37(6):138.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.002]
[9]田龙,闫洁诚,李明辉,等.利用多次采集计划CT和锥形束CT评价前列腺癌靶区运动相关性[J].中国医学物理学杂志,2021,38(2):172.[doi:DOI:10.3969/j.issn.1005-202X.2021.02.009]
 TIAN Long,YAN Jiecheng,LI Minghui,et al.Evaluating the correlation between pre- and in-treatment target displacements in prostate cancer radiotherapy by multiple acquisition planning CT and cone-beam CT[J].Chinese Journal of Medical Physics,2021,38(6):172.[doi:DOI:10.3969/j.issn.1005-202X.2021.02.009]
[10]潘兴晨,汪冬,胡丽琴.基于靶区与危及器官重叠度的自动治疗计划设计[J].中国医学物理学杂志,2021,38(10):1203.[doi:DOI:10.3969/j.issn.1005-202X.2021.10.004]
 PAN Xingchen,WANG Dong,HU Liqin.Automatic treatment planning based on the degree of overlap between OAR and PTV[J].Chinese Journal of Medical Physics,2021,38(6):1203.[doi:DOI:10.3969/j.issn.1005-202X.2021.10.004]

备注/Memo

备注/Memo:
【收稿日期】2024-02-03 【基金项目】国家自然科学基金(11975313);中国医学科学院中央级公益性科研院所基本科研业务费健康长寿专项(2021-JKCS-003) 【作者简介】王云祥,研究实习员,研究方向:图像引导放疗,E-mail: wangyx2518@163.com 【通信作者】门阔,副研究员,研究方向:人工智能在放射治疗中的应用,E-mail: menkuo126@126.com
更新日期/Last Update: 2024-06-25