[1]谢浩杰,鲁明丽,张陈,等.基于深度学习的肺结核检测综述[J].中国医学物理学杂志,2024,41(7):918-924.[doi:DOI:10.3969/j.issn.1005-202X.2024.07.020]
 XIE Haojie,LU Mingli,ZHANG Chen,et al.Review on tuberculosis detection using deep learning[J].Chinese Journal of Medical Physics,2024,41(7):918-924.[doi:DOI:10.3969/j.issn.1005-202X.2024.07.020]
点击复制

基于深度学习的肺结核检测综述()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
41卷
期数:
2024年第7期
页码:
918-924
栏目:
医学人工智能
出版日期:
2024-07-25

文章信息/Info

Title:
Review on tuberculosis detection using deep learning
文章编号:
1005-202X(2024)07-0918-07
作者:
谢浩杰1鲁明丽2张陈1周理想3滕诣迪4王明明1
1.盐城工学院电气工程学院, 江苏 盐城 221051; 2.常熟理工学院电气与自动化工程学院, 江苏 常熟 215500; 3.苏州大学机电工程学院, 江苏 苏州 215031; 4.常熟理工学院电子信息工程学院, 江苏 常熟 215500
Author(s):
XIE Haojie1 LU Mingli2 ZHANG Chen1 ZHOU Lixiang3 TENG Yidi4 WANG Mingming1
1. School of Electrical Engineering, Yancheng Institute of Technology, Yancheng 221051, China 2. School of Electrical and Automation Engineering, Changshu Institute of Technology, Changshu 215500, China 3. School of Mechanical and Electrical Engineering, Soochow University, Suzhou 215031, China 4. School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu 215500, China
关键词:
肺结核医学影像自动检测深度学习综述
Keywords:
Keywords: pulmonary tuberculosis medical image automatic detection deep learning review
分类号:
R318;TP391.7
DOI:
DOI:10.3969/j.issn.1005-202X.2024.07.020
文献标志码:
A
摘要:
基于医学影像的肺结核病灶自动检测技术成为医学图像处理领域的研究热点。本研究围绕深度学习在肺结核病灶检测方面的相关研究与应用展开综述,首先阐述用于肺结核检测的实验基准,涵盖肺部医学影像的相关公开数据库和肺结核检测与分类竞赛的相关研究进展,然后提出肺结核检测领域中深度学习方法与应用的发展趋势,最后分析深度学习在肺结核诊断中面临的挑战。本研究从技术特性、性能优势、应用前景等方面对这些技术的研究进展以及面临的挑战进行总结和展望。
Abstract:
The automatic detection of tuberculosis lesions based on medical imaging has become a research hotspot in medical image processing. A comprehensive review of relevant researches and applications pertaining to deep learning in tuberculosis lesion detection is provided, which elucidates the experimental benchmarks in tuberculosis analysis, covering public datasets of pulmonary medical images and recent research advancements in tuberculosis detection and classification competitions, introduces emerging trends in deep learning methods and applications in tuberculosis detection, and analyzes the challenges existing in tuberculosis diagnosis using deep learning. The review summarizes and provides insights into the research advances and challenges of these technologies from the aspects of technical characteristics, performance advantages, and application prospects.

相似文献/References:

[1]王弈,李传富.人工智能方法在医学图像处理中的研究新进展[J].中国医学物理学杂志,2013,30(03):4138.[doi:10.3969/j.issn.1005-202X.2013.03.013]
[2]朱翔宇,葛中芹,张冰清,等.基于图像处理的医学影像处理平台系统设计[J].中国医学物理学杂志,2017,34(4):388.[doi:DOI:10.3969/j.issn.1005-202X.2017.04.014]
[3]张明,吴凉,张文莉. 一种符合医学数字影像与通讯标准的医学影像管理系统的设计[J].中国医学物理学杂志,2018,35(3):281.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.007]
 ZHANG Ming,WU Liang,ZHANG Wenli. Design of a medical image management system conforming to DICOM standard[J].Chinese Journal of Medical Physics,2018,35(7):281.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.007]
[4]李双双,侯震,刘娟,等.影像组学分析与建模工具综述[J].中国医学物理学杂志,2018,35(9):1043.[doi:10.3969/j.issn.1005-202X.2018.09.010]
 LI Shuangshuang,HOU Zhen,LIU Juan,et al.Review of radiomic analysis and modeling tools[J].Chinese Journal of Medical Physics,2018,35(7):1043.[doi:10.3969/j.issn.1005-202X.2018.09.010]
[5]安冬会,杨俊潇,屈亚林,等. 能谱CT在肺部磨玻璃结节良恶性鉴别中的应用价值[J].中国医学物理学杂志,2018,35(10):1160.[doi:DOI:10.3969/j.issn.1005-202X.2018.10.009]
 AN Donghui,YANG Junxiao,QU Yalin,et al. Application value of energy spectrum CT in the differential diagnosis of benign and malignant pulmonary ground-glass nodule[J].Chinese Journal of Medical Physics,2018,35(7):1160.[doi:DOI:10.3969/j.issn.1005-202X.2018.10.009]
[6]赵瑞斌,王安琪,吴艳茹,等. X线机工作特性模拟实验装置设计与研制[J].中国医学物理学杂志,2019,36(9):1063.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.013]
 ZHAO Ruibin,WANG Anqi,WU Yanru,et al. Design and development of an experimental device to simulate the working characteristics of X-ray machine[J].Chinese Journal of Medical Physics,2019,36(7):1063.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.013]
[7]杨朝生,陈慧,孙雪皎,等.结核感染T细胞斑点试验与肺部CT表现的相关性[J].中国医学物理学杂志,2020,37(9):1155.[doi:10.3969/j.issn.1005-202X.2020.09.014]
 YANG Chaosheng,CHEN Hui,SUN Xuejiao,et al.Correlation between T-SPOT.TB assay and pulmonary CT findings in pulmonary tuberculosis[J].Chinese Journal of Medical Physics,2020,37(7):1155.[doi:10.3969/j.issn.1005-202X.2020.09.014]
[8]郭翌,吴香奕,吴茜,等.基于循环一致生成对抗网络的多模态影像刚性配准[J].中国医学物理学杂志,2021,38(2):198.[doi:DOI:10.3969/j.issn.1005-202X.2021.02.013]
 GUO Yi,WU Xiangyi,WU Qian,et al.Rigid registration of multimodal images based on CycleGAN[J].Chinese Journal of Medical Physics,2021,38(7):198.[doi:DOI:10.3969/j.issn.1005-202X.2021.02.013]
[9]翟安,邓平,贝承丽,等.胸部物理治疗联合纤维支气管镜灌洗对肺结核的效果[J].中国医学物理学杂志,2021,38(8):1023.[doi:DOI:10.3969/j.issn.1005-202X.2021.08.020]
 ZHAI An,DENG Ping,BEI Chengli,et al.Therapeutic effect of chest physiotherapy combined with fiberoptic bronchoscopy lavage on pulmonary tuberculosis[J].Chinese Journal of Medical Physics,2021,38(7):1023.[doi:DOI:10.3969/j.issn.1005-202X.2021.08.020]
[10]张富利,王雅棣,王秋生.放射治疗中医学图像自动分割的研究进展[J].中国医学物理学杂志,2021,38(9):1108.[doi:10.3969/j.issn.1005-202X.2021.09.011]
 ZHANG Fuli,WANG Yadi,WANG Qiusheng.Advances in automatic segmentation of medical images in radiotherapy[J].Chinese Journal of Medical Physics,2021,38(7):1108.[doi:10.3969/j.issn.1005-202X.2021.09.011]

备注/Memo

备注/Memo:
【收稿日期】2024-02-21 【基金项目】苏州市科技计划项目(SYG202129) 【作者简介】谢浩杰,硕士,研究方向:医学图像处理、计算机视觉、深度学习,E-mail: xiehaojie02@126.com 【通信作者】鲁明丽,博士,教授,研究方向:医学图像处理、多目标分割与跟踪、人工智能技术与应用等,E-mail: luml@cslg.edu.cn
更新日期/Last Update: 2024-07-13