[1]岑菲菲,陈良.基于人工智能技术驱动的新药研发[J].中国医学物理学杂志,2024,41(11):1437-1442.[doi:DOI:10.3969/j.issn.1005-202X.2024.11.017]
 CEN Feifei,CHEN Liang.New drug research and development driven by artificial intelligence technology[J].Chinese Journal of Medical Physics,2024,41(11):1437-1442.[doi:DOI:10.3969/j.issn.1005-202X.2024.11.017]
点击复制

基于人工智能技术驱动的新药研发()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
41卷
期数:
2024年第11期
页码:
1437-1442
栏目:
医学人工智能
出版日期:
2024-11-26

文章信息/Info

Title:
New drug research and development driven by artificial intelligence technology
文章编号:
1005-202X(2024)11-1437-06
作者:
岑菲菲1陈良2
1.乐山职业技术学院生物医药学院, 四川 乐山 614000; 2.成都倍特药业股份有限公司, 四川 成都 610095
Author(s):
CEN Feifei1 CHEN Liang2
1. School of Biomedicine, Leshan Vocational and Technical College, Leshan 614000, China 2. Chengdu Brilliant Pharmaceutical Co., Ltd., Chengdu 610095, China
关键词:
人工智能技术深度学习新药研发综述
Keywords:
Keywords: artificial intelligence technology deep learning new drug research and development review
分类号:
R318;R913
DOI:
DOI:10.3969/j.issn.1005-202X.2024.11.017
文献标志码:
A
摘要:
通过深度学习、机器学习等技术,能够迅速地筛选潜在的药物候选分子,并预测其与生物靶标的相互作用。此外,人工智能在药物设计、合成路径规划、临床试验数据分析等方面展现出巨大潜力,有望缩短新药从实验室到市场的时间,降低研发成本。本文综述当前人工智能技术在新药研发中的应用进展,探讨其面临的挑战与未来发展方向。
Abstract:
The technologies such as deep learning and machine learning enable the rapid screening for potential drug candidate molecules and the prediction of their interactions with biological targets. Additionally, artificial intelligence exhibits great potential in drug design, synthesis pathway planning and clinical trial data analysis, and is expected to shorten the time from laboratory to market for new drugs and reduce research and development costs. Herein the study reviews the application of artificial intelligence technology in new drug research and development, explores the challenges it faces, and discusses the future development directions.

相似文献/References:

[1]陶源,王佳飞,杜俊龙,等.基于卷积神经网络的细胞识别[J].中国医学物理学杂志,2017,34(1):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
 [J].Chinese Journal of Medical Physics,2017,34(11):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
[2]门阔,戴建荣. 利用深度反卷积神经网络自动勾画放疗危及器官[J].中国医学物理学杂志,2018,35(3):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
 MEN Kuo,DAI Jianrong. Automatic segmentation of organs at risk in radiotherapy using deep deconvolutional neural network[J].Chinese Journal of Medical Physics,2018,35(11):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
[3]邓金城,彭应林,刘常春,等. 深度卷积神经网络在放射治疗计划图像分割中的应用[J].中国医学物理学杂志,2018,35(6):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
 DENG Jincheng,PENG Yinglin,LIU Changchun,et al. Application of deep convolution neural network in radiotherapy planning image segmentation[J].Chinese Journal of Medical Physics,2018,35(11):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
[4]查雪帆,杨丰,吴俣南,等. 结合迁移学习与深度卷积网络的心电分类研究[J].中国医学物理学杂志,2018,35(11):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
 ZHA Xuefan,YANG Feng,WU Yunan,et al. ECG classification based on transfer learning and deep convolution neural network[J].Chinese Journal of Medical Physics,2018,35(11):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
[5]宫进昌,赵尚义,王远军. 基于深度学习的医学图像分割研究进展[J].中国医学物理学杂志,2019,36(4):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
 GONG Jinchang,ZHAO Shangyi,WANG Yuanjun.Research progress on deep learning-based medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(11):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
[6]安莹,黄能军,杨荣,等. 基于深度学习的心血管疾病风险预测模型[J].中国医学物理学杂志,2019,36(9):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
 AN Ying,HUANG Nengjun,YANG Rong,et al. Deep learning-based model for risk prediction of cardiovascular diseases[J].Chinese Journal of Medical Physics,2019,36(11):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
[7]徐航,随力,张靖雯,等.卷积神经网络在医学图像分割中的研究进展[J].中国医学物理学杂志,2019,36(11):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
 XU Hang,SUI Li,ZHANG Jingwen,et al.Progress on convolutional neural network in medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(11):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
[8]张富利,崔德琪,王秋生,等.基于深度学习和图谱库方法自动勾画肿瘤放疗中危及器官的比较[J].中国医学物理学杂志,2019,36(12):1486.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.024]
 ZHANG Fuli,CUI Deqi,WANG Qiusheng,et al.Comparative study of deep learning- versus Atlas-based auto-segmentation of organs-at-risk in tumor radiotherapy[J].Chinese Journal of Medical Physics,2019,36(11):1486.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.024]
[9]温佳圆,林国钰,张逸文,等.应用深度学习网络实现肾小球滤过膜超微病理图像的语义分割[J].中国医学物理学杂志,2020,37(2):195.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.012]
 WEN Jiayuan,LIN Guoyu,ZHANG Yiwen,et al.Semantic segmentation of ultrastructural pathological images of glomerular filtration membrane using deep learning network[J].Chinese Journal of Medical Physics,2020,37(11):195.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.012]
[10]秦楠楠,薛旭东,吴爱林,等.基于U-net卷积神经网络的宫颈癌临床靶区和危及器官自动勾画的研究[J].中国医学物理学杂志,2020,37(4):524.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.023]
 QIN Nannan,XUE Xudong,WU Ailin,et al.Automatic segmentation of clinical target volumes and organs-at-risk in radiotherapy for cervical cancer using U-net convolutional neural network[J].Chinese Journal of Medical Physics,2020,37(11):524.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.023]

备注/Memo

备注/Memo:
【收稿日期】2024-04-14 【基金项目】四川省教育厅教育科研课题(SCJG21A257);乐山市科技局重点研究项目(19SZD114) 【作者简介】岑菲菲,硕士,讲师,主管药师,研究方向:人工智能在药理学、临床药学、药物分析的应用,E-mail: feifei-20150806@163.com
更新日期/Last Update: 2024-11-26