[1]张丹凤,蒋俊,吴昊天,等.基于nnU-Net的宫颈癌近距离治疗中高危临床靶区及危及器官的自动勾画[J].中国医学物理学杂志,2023,40(12):1463-1467.[doi:DOI:10.3969/j.issn.1005-202X.2023.12.003]
 ZHANG Danfeng,JIANG Jun,WU Haotian,et al.Auto-segmentation of high-risk clinical target volume and organs-at-risk for brachytherapy of cervical cancer based on nnUNet[J].Chinese Journal of Medical Physics,2023,40(12):1463-1467.[doi:DOI:10.3969/j.issn.1005-202X.2023.12.003]
点击复制

基于nnU-Net的宫颈癌近距离治疗中高危临床靶区及危及器官的自动勾画()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
40卷
期数:
2023年第12期
页码:
1463-1467
栏目:
医学放射物理
出版日期:
2023-12-27

文章信息/Info

Title:
Auto-segmentation of high-risk clinical target volume and organs-at-risk for brachytherapy of cervical cancer based on nnUNet
文章编号:
1005-202X(2023)12-1463-05
作者:
张丹凤1蒋俊1吴昊天2裴曦2汪志1
1.安徽医科大学第一附属医院肿瘤放疗科, 安徽 合肥 230022; 2.安徽慧软科技有限公司, 安徽 合肥 230088
Author(s):
ZHANG Danfeng1 JIANG Jun1 WU Haotian2 PEI Xi2 WANG Zhi1
1. Department of Radiation Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China 2. Anhui Wisdom Technology Co., Ltd, Hefei 230088, China
关键词:
宫颈癌深度学习肿瘤靶区自动勾画近距离治疗
Keywords:
Keywords: cervical cancer deep learning tumor target volume automatic segmentation brachytherapy
分类号:
R318;R815
DOI:
DOI:10.3969/j.issn.1005-202X.2023.12.003
文献标志码:
A
摘要:
目的:基于一种深度学习卷积神经网络模型(nnU-Net)实现CT引导的宫颈癌近距离治疗中高危临床靶区(HR-CTV)及危及器官(OARs)的自动勾画,探讨其临床应用价值。方法:纳入医院已完成图像引导近距离治疗的63例未手术的局部晚期宫颈癌患者的CT图像作为研究数据,由1名高年资医师对所有HR-CTV及OARs(膀胱、直肠及乙状结肠)进行统一勾画,将手动勾画的HR-CTV及OARs作为金标准,模型自动勾画结果与作为金标准的手动勾画图像进行比较。采用Dice相似性系数(DSC)对勾画的HR-CTV及OARs的精准度进行评价。结果:HR-CTV、膀胱、直肠和乙状结肠的DSC值分别为0.903±0.015、0.948±0.011、0.903±0.008及0.803±0.024。结论:本模型可准确勾画HR-CTV、膀胱、直肠及乙状结肠,但放疗医生仍应该仔细检查勾画结果。
Abstract:
Abstract: Objective To develop an auto-segmentation model based on no new U-net for delineating high-risk clinical target volume (HR-CTV) and organs-at-risk (OAR) in CT-guided brachytherapy of cervical cancer, and to explore its clinical value. Methods The CT images of 63 patients with locally advanced cervical cancer who had completed image-guided brachytherapy were collected. The HR-CTV and OAR including bladder, rectum and sigmoid colon were delineated manually by a senior oncologist, and the results were taken as the gold standard. The automatic and manual segmentation results were compared, and Dice similarity coefficient was used to evaluate HR-CTV and OAR auto-segmentation accuracies. Results The Dice similarity coefficients of HR-CTV, bladder, rectum, and sigmoid colon were 0.903±0.015, 0.948±0.011, 0.903±0.008, and 0.803±0.024, respectively. Conclusion The established model can realize the accurate segmentations of HR-CTV, bladder, rectum and sigmoid colon, but the oncologist still needs to scrupulously check the results.

相似文献/References:

[1]戴相昆,杨丰蔚,杜 镭,等.等效均匀剂量优化法在宫颈癌调强计划中的应用[J].中国医学物理学杂志,2015,32(02):290.[doi:10.3969/j.issn.1005-202X.2015.02.033]
[2]刘 浩,王 新,李公平,等.宫颈癌放疗高危临床靶区变化及其对累计吸收剂量的影响[J].中国医学物理学杂志,2015,32(03):379.[doi:10.3969/j.issn.1005-202X.2015.03.017]
[3]孙晓欢,周咏春,谭丽娜,等.容积旋转调强与固定野调强在宫颈癌术后放疗中的剂量学比较[J].中国医学物理学杂志,2014,31(01):4604.[doi:10.3969/j.issn.1005-202X.2014.01.003]
[4]刘 浩,王 新,李公平,等.用二维电离室矩阵验证宫颈癌腔内放疗剂量分布[J].中国医学物理学杂志,2014,31(04):4988.[doi:10.3969/j.issn.1005-202X.2014.04.004]
[5]余 辉,张书旭.宫颈癌后装治疗剂量的调强优化方法[J].中国医学物理学杂志,2014,31(05):5114.[doi:10.3969/j.issn.1005-202X.2014.05.004]
[6]查元梓,张松方,屠永清,等.子野权重优化对CMS XiO宫颈癌调强计划的影响[J].中国医学物理学杂志,2013,30(01):3866.[doi:10.3969/j.issn.1005-202X.2013.01.007]
[7]张富利,刘清智,张伟超,等.宫颈癌术后盆腔螺旋断层调强放疗两种计划设计方法的剂量学分析[J].中国医学物理学杂志,2013,30(04):4229.[doi:10.3969/j.issn.1005-202X.2013.04.003]
[8]王佳浩,赖建军,唐荣军,等.结合EPID与EUD方法确定宫颈癌病例靶区最佳生物外放边界的研究[J].中国医学物理学杂志,2013,30(05):4378.[doi:10.3969/j.issn.1005-202X.2013.05.009]
[9]张富利,刘清智,王雅棣,等.基于配置不同类型MLC叶片加速器的宫颈癌术后调强放疗计划评估[J].中国医学物理学杂志,2013,30(05):4383.[doi:10.3969/j.issn.1005-202X.2013.05.010]
[10]刘致滨,王占宇,龙雨松.两种优化技术在宫颈癌术后IMRT计划中的比较[J].中国医学物理学杂志,2015,32(04):534.[doi:10.3969/j.issn.1005-202X.2015.04.018]
 [J].Chinese Journal of Medical Physics,2015,32(12):534.[doi:10.3969/j.issn.1005-202X.2015.04.018]

备注/Memo

备注/Memo:
【收稿日期】2023-07-13 【基金项目】安徽省自然科学基金(1908085MA27) 【作者简介】张丹凤,硕士,研究方向:妇科近距离放射治疗,E-mail: 996399655@qq.com 【通信作者】汪志,高级工程师,研究方向:医学物理,E-mail: wang_zhi81@163.com
更新日期/Last Update: 2023-12-27