[1]周洁,郑燕婷,江舒琪,等.CT影像组学联合形态学特征模型评估非小细胞肺癌患者预后生存期的价值[J].中国医学物理学杂志,2024,41(1):18-26.[doi:DOI:10.3969/j.issn.1005-202X.2024.01.003]
 ZHOU Jie,ZHENG Yanting,JIANG Shuqi,et al.Value of CT radiomics combined with morphological features in predicting the prognosis of patients with non-small cell lung cancer[J].Chinese Journal of Medical Physics,2024,41(1):18-26.[doi:DOI:10.3969/j.issn.1005-202X.2024.01.003]
点击复制

CT影像组学联合形态学特征模型评估非小细胞肺癌患者预后生存期的价值()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
41卷
期数:
2024年第1期
页码:
18-26
栏目:
医学影像物理
出版日期:
2024-01-23

文章信息/Info

Title:
Value of CT radiomics combined with morphological features in predicting the prognosis of patients with non-small cell lung cancer
文章编号:
1005-202X(2024)01-0018-09
作者:
周洁1郑燕婷1江舒琪1安杰1邱士军1SUWAL Sushant2黄绥丹2陈淮2李翠3方嘉琪3
1.广州中医药大学第一附属医院影像科, 广东 广州 510405; 2.广州医科大学附属第二医院放射科, 广东 广州 510260; 3.广州中医药大学第一临床医学院, 广东 广州 510405
Author(s):
ZHOU Jie1 ZHENG Yanting1 JIANG Shuqi1 AN Jie1 QIU Shijun1 SUWAL Sushant2 HUANG Suidan2 CHEN Huai2 LI Cui3 FANG Jiaqi3
1. Department of Imaging, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China 2. Department of Radiology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China 3. The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
关键词:
非小细胞肺癌影像组学形态学特征预后生存
Keywords:
Keywords: non-small cell lung cancer radiomics morphological feature prognosis survival
分类号:
R318;R734.2
DOI:
DOI:10.3969/j.issn.1005-202X.2024.01.003
文献标志码:
A
摘要:
目的:探讨CT影像组学联合形态学特征模型对非小细胞肺癌患者预后生存时间的预测价值。方法:从癌症影像数据库(TCIA)下载并筛选出300例非小细胞肺癌患者资料(300个病灶),随机选取210例为训练集,90例为测试集。根据预后生存期将患者分为两个组,预后生存期≤3年为1组,预后生存期>3年为2组。用3D Slicer软件在CT图像病灶中逐层勾画得到感兴趣区(ROI),再从每个ROI中提取影像组学特征,采用t检验和最小绝对收缩与选择算子(LASSO)算法进行影像组学特征筛选。运用Logistic回归建立3种预测模型,包括影像组学模型、形态学模型和联合诊断模型。采用受试者工作特征(ROC)曲线评价3种预测模型效能。结果:影像组学标签、纵隔淋巴结转移在训练集和测试集的差异均具有统计学意义。影像组学模型、形态学模型和联合诊断模型,在训练集中ROC曲线下面积(AUC)分别为0.784(95% CI:0.722~0.847)、0.734(95% CI:0.664~0.804)、0.748(95% CI:0.680~0.815),在测试集中分别为0.737(95% CI:0.630~0.844)、0.665(95% CI:0.554~0.777)、0.687(95% CI:0.578~0.797)。影像组学模型诊断效能最佳。结论:CT影像组学模型能有效地预测非小细胞肺癌患者预后生存时间。
Abstract:
Abstract: Objective To explore the predictive value of CT radiomics and morphological features for the prognosis and survival in non-small cell lung cancer (NSCLC) patients. Methods The clinic data of 300 NSCLC patients (300 lesions) were downloaded from the Cancer Imaging Archive, with 210 randomly selected as the training set and 90 as the test set. According to the prognosis and survival, the patients were divided into two groups with survival period ≤ 3 and >3 years. 3D Slicer software was used to delineate the regions of interest layer by layer in CT images, and the radiomics features were extracted from each region of interest. Both t-test and least absolute shrinkage and selection operator were utilized for radiomics feature screening. Three types of prediction models, namely radiomics model, morphological model and combined model, were constructed with Logistic regression, whose performances were evaluated using the receiver operating characteristic (ROC) curve. Results The differences in radiomics labels and mediastinal lymph node metastasis between the training set and the test set were statistically significant. For radiomics model, morphological model and combined model, the area under the ROC curve was 0.784 (95% CI:0.722-0.847), 0.734 (95% CI:0.664-0.804) and 0.748 (95% CI:0.680-0.815) in the training set, and 0.737 (95% CI:0.630-0.844), 0.665 (95% CI:0.554-0.777) and 0.687 (95% CI:0.578-0.797) in the test set, which demonstrated that radiomics model had the best diagnostic performance. Conclusion The CT radiomics model can effectively predict the prognosis and survival in NSCLC patients.

相似文献/References:

[1]刘旭红,陈 晓,赵 彪,等.非小细胞肺癌三维适形计划和调强计划剂量学比较与分析[J].中国医学物理学杂志,2014,31(02):4740.[doi:10.3969/j.issn.1005-202X.2014.02.005]
[2]黄宝添,吴丽丽,陈创珍,等.AXB与AAA算法在Ⅰ期非小细胞肺癌立体定向治疗中的剂量学比较[J].中国医学物理学杂志,2014,31(03):4881.[doi:10.3969/j.issn.1005-202X.2014.03.008]
[3]李 毅,李文荣,苏 进,等.基于CBCT非小细胞肺癌外放边界研究[J].中国医学物理学杂志,2014,31(04):5006.[doi:10.3969/j.issn.1005-202X.2014.04.008]
[4]陈旎,等.III期非小细胞肺癌三维适形与调强技术的剂量学比较[J].中国医学物理学杂志,2016,33(2):198.[doi:10.3969/j.issn.1005-202X.2016.02.019]
[5]李毅,唐丰文,张晓智. 基于四维CT和锥形束CT确定非小细胞肺癌放疗靶区外放边界[J].中国医学物理学杂志,2016,33(9):892.[doi:10.3969/j.issn.1005-202X.2016.09.005]
 [J].Chinese Journal of Medical Physics,2016,33(1):892.[doi:10.3969/j.issn.1005-202X.2016.09.005]
[6]王锐濠,张书旭,谭剑明,等.最小机器跳数对非小细胞肺癌调强放疗计划设计的影响[J].中国医学物理学杂志,2016,33(11):1092.[doi:10.3969/j.issn.1005-202X.2016.11.003]
 [J].Chinese Journal of Medical Physics,2016,33(1):1092.[doi:10.3969/j.issn.1005-202X.2016.11.003]
[7]朱晟超,王远军.锥形束CT对非小细胞肺癌放疗摆位误差及放疗射线剂量的影响锥形束CT对非小细胞肺癌放疗摆位误差及放疗射线剂量的影响[J].中国医学物理学杂志,2017,34(2):109.[doi:10.3969/j.issn.1005-202X.2017.02.001]
 Effect of cone beam CT on setup error and radiation dose distribution in radiotherapy for nonsmall[J].Chinese Journal of Medical Physics,2017,34(1):109.[doi:10.3969/j.issn.1005-202X.2017.02.001]
[8]宋明永,戴相昆,杜乐辉,等.3种调强放疗方式治疗非小细胞肺癌的剂量学比较[J].中国医学物理学杂志,2017,34(2):121.[doi:10.3969/j.issn.1005-202X.2017.02.003]
 Dosimetric comparison of three intensity- modulated radiotherapies for non- small- cell lung[J].Chinese Journal of Medical Physics,2017,34(1):121.[doi:10.3969/j.issn.1005-202X.2017.02.003]
[9]戴相昆,曲宝林,杜乐辉,等.断层径照技术在非小细胞肺癌放疗中的应用[J].中国医学物理学杂志,2017,34(2):126.[doi:10.3969/j.issn.1005-202X.2017.02.004]
 Application of Tomo Direct in the radiotherapy of non-small cell lung cancer[J].Chinese Journal of Medical Physics,2017,34(1):126.[doi:10.3969/j.issn.1005-202X.2017.02.004]
[10]马长升,马长东,李殊吏,等.非小细胞肺癌放疗中靶区和危及器官真实剂量体积直方图[J].中国医学物理学杂志,2017,34(7):702.[doi:10.3969/j.issn.1005-202X.2017.07.011]
[11]沙雪,巩贯忠,邓红彬,等. 18F-FDG PET/CT影像组学预测非小细胞肺癌亚型的研究[J].中国医学物理学杂志,2019,36(3):311.[doi:DOI:10.3969/j.issn.1005-202X.2019.03.013]
 SHA Xue,GONG Guanzhong,DENG Hongbin,et al. 18F-FDG PET/CT radiomic features for predicting the subtypes of non-small-cell lung cancer[J].Chinese Journal of Medical Physics,2019,36(1):311.[doi:DOI:10.3969/j.issn.1005-202X.2019.03.013]
[12]卢孔尧,黄钢,左艳.非小细胞肺癌淋巴结转移预测模型研究[J].中国医学物理学杂志,2022,39(2):182.[doi:DOI:10.3969/j.issn.1005-202X.2022.02.009]
 LU Kongyao,HUANG Gang,ZUO Yan.Prediction model for lymph node metastasis in non-small cell lung cancer[J].Chinese Journal of Medical Physics,2022,39(1):182.[doi:DOI:10.3969/j.issn.1005-202X.2022.02.009]
[13]戴倩,王梦,黄钢.基于18F-FDG PET CT影像组学的非小细胞肺癌病理亚型分类[J].中国医学物理学杂志,2023,40(4):416.[doi:DOI:10.3969/j.issn.1005-202X.2023.04.004]
 DAI Qian,WANG Meng,HUANG Gang.Classification of pathological subtypes of non-small-cell lung cancer based on 18F-FDG PET CT radiomics[J].Chinese Journal of Medical Physics,2023,40(1):416.[doi:DOI:10.3969/j.issn.1005-202X.2023.04.004]
[14]周露,王琳婧,张国前,等.基于影像组学和剂量组学的放射性肺炎预测研究[J].中国医学物理学杂志,2023,40(7):808.[doi:DOI:10.3969/j.issn.1005-202X.2023.07.003]
 ZHOU Lu,WANG Linjing,ZHANG Guoqian,et al.Prediction of radiation pneumonitis based on radiomics and dosiomics[J].Chinese Journal of Medical Physics,2023,40(1):808.[doi:DOI:10.3969/j.issn.1005-202X.2023.07.003]

备注/Memo

备注/Memo:
【收稿日期】2023-09-10 【基金项目】广东省自然科学基金(2022A1515011028) 【作者简介】周洁,博士,副主任医师,主要研究方向:胸部疾病影像诊断,E-mail: zhoujie1989@gzucm.edu.cn 【通信作者】陈淮,博士,教授,主要研究方向:胸部疾病影像诊断,E-mail: chenhuai1977@163.com
更新日期/Last Update: 2024-01-23