[1]周露,王琳婧,张国前,等.基于影像组学和剂量组学的放射性肺炎预测研究[J].中国医学物理学杂志,2023,40(7):808-813.[doi:DOI:10.3969/j.issn.1005-202X.2023.07.003]
 ZHOU Lu,WANG Linjing,ZHANG Guoqian,et al.Prediction of radiation pneumonitis based on radiomics and dosiomics[J].Chinese Journal of Medical Physics,2023,40(7):808-813.[doi:DOI:10.3969/j.issn.1005-202X.2023.07.003]
点击复制

基于影像组学和剂量组学的放射性肺炎预测研究()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
40卷
期数:
2023年第7期
页码:
808-813
栏目:
其他(激光医学等)
出版日期:
2023-07-15

文章信息/Info

Title:
Prediction of radiation pneumonitis based on radiomics and dosiomics
文章编号:
1005-202X(2023)07-0808-06
作者:
周露王琳婧张国前李慧君廖煜良吴书裕
广州医科大学附属肿瘤医院放疗科, 广东 广州 510095
Author(s):
ZHOU Lu WANG Linjing ZHANG Guoqian LI Huijun LIAO Yuliang WU Shuyu
Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, China
关键词:
非小细胞肺癌影像组学剂量组学放射性肺炎机器学习
Keywords:
non-small-cell lung cancer radiomics dosiomics radiation pneumonitis machine learning
分类号:
R312;R818.7
DOI:
DOI:10.3969/j.issn.1005-202X.2023.07.003
文献标志码:
A
摘要:
目的:旨在利用影像组学和剂量组学的多组学方法,建立并验证一个有效的基于CT图像的放射性肺炎(RP)预测模型。方法:对2019年至2021年在广州医科大学附属肿瘤医院接受放疗的91例非小细胞肺癌患者进行回顾性分析。将除去临床靶区的全肺(Lung-CTV)作为感兴趣区域,从Lung-CTV区域的CT图像和剂量分布中提取影像组学和剂量组学特征。将单独的剂量体积直方图(DVH)特征、影像组学结合DVH(radio+DVH)特征、影像组学结合剂量组学(radio+dose)特征,分别输入11个不同的分类器来构建预测模型,采用五倍交叉验证法来完成分类实验。利用接受者操作特征(ROC)曲线下的面积(AUC)、准确性、精确性、召回率和F1值来评估预测模型的性能。结果:与DVH模型相比,radio+DVH和radio+dose的AUC值更高,差异有统计学意义(P<0.05)。与DVH和radio+DVH模型相比,radio+dose的准确率和F1值更高,差异有统计学意义(P<0.05)。结论:使用基于机器学习的影像组学和剂量组学的多组学方法预测RP的性能更好,有望为临床治疗提供指导。
Abstract:
Abstract: Objective To establish and validate an effective CT-based radiation pneumonitis (RP) prediction model using the multi-omics approach combining radiomics with dosiomics. Methods A retrospective analysis was carried out on 91 non-small-cell lung cancer patients who were treated with radiotherapy from 2019 to 2021 in Affiliated Cancer Hospital and Institute of Guangzhou Medical University. The whole lung excluding clinical target volume (Lung-CTV) was taken as the region of interest (ROI), and the radiomics and dosiomics features were extracted from the CT image and dose distribution of Lung-CTV. The dose-volume histogram (DVH) features, radiomics combined with DVH (radio+DVH) features, and radiomics combined with dosiomics (radio+dose) features were imported into 11 different classifiers for constructing prediction models. The 5-fold cross-validation was used to complete the classification experiment. The area under the curve (AUC) of the receiver operating characteristics (ROC), accuracy, precision, recall and F1-score were calculated to assess the model performances. Results The AUC of radio+DVH and radio+dose was higher than that of DVH model (P<0.05) and radio+dose had higher accuracy and F1-score than DVH and radio+DVH (P<0.05). Conclusion The multi-omics approach using machine learning-based radiomics and dosiomics to predict RP exhibits better performance and is expected to provide guidance for clinical treatment.

相似文献/References:

[1]刘旭红,陈 晓,赵 彪,等.非小细胞肺癌三维适形计划和调强计划剂量学比较与分析[J].中国医学物理学杂志,2014,31(02):4740.[doi:10.3969/j.issn.1005-202X.2014.02.005]
[2]黄宝添,吴丽丽,陈创珍,等.AXB与AAA算法在Ⅰ期非小细胞肺癌立体定向治疗中的剂量学比较[J].中国医学物理学杂志,2014,31(03):4881.[doi:10.3969/j.issn.1005-202X.2014.03.008]
[3]李 毅,李文荣,苏 进,等.基于CBCT非小细胞肺癌外放边界研究[J].中国医学物理学杂志,2014,31(04):5006.[doi:10.3969/j.issn.1005-202X.2014.04.008]
[4]陈旎,等.III期非小细胞肺癌三维适形与调强技术的剂量学比较[J].中国医学物理学杂志,2016,33(2):198.[doi:10.3969/j.issn.1005-202X.2016.02.019]
[5]李毅,唐丰文,张晓智. 基于四维CT和锥形束CT确定非小细胞肺癌放疗靶区外放边界[J].中国医学物理学杂志,2016,33(9):892.[doi:10.3969/j.issn.1005-202X.2016.09.005]
 [J].Chinese Journal of Medical Physics,2016,33(7):892.[doi:10.3969/j.issn.1005-202X.2016.09.005]
[6]王锐濠,张书旭,谭剑明,等.最小机器跳数对非小细胞肺癌调强放疗计划设计的影响[J].中国医学物理学杂志,2016,33(11):1092.[doi:10.3969/j.issn.1005-202X.2016.11.003]
 [J].Chinese Journal of Medical Physics,2016,33(7):1092.[doi:10.3969/j.issn.1005-202X.2016.11.003]
[7]朱晟超,王远军.锥形束CT对非小细胞肺癌放疗摆位误差及放疗射线剂量的影响锥形束CT对非小细胞肺癌放疗摆位误差及放疗射线剂量的影响[J].中国医学物理学杂志,2017,34(2):109.[doi:10.3969/j.issn.1005-202X.2017.02.001]
 Effect of cone beam CT on setup error and radiation dose distribution in radiotherapy for nonsmall[J].Chinese Journal of Medical Physics,2017,34(7):109.[doi:10.3969/j.issn.1005-202X.2017.02.001]
[8]宋明永,戴相昆,杜乐辉,等.3种调强放疗方式治疗非小细胞肺癌的剂量学比较[J].中国医学物理学杂志,2017,34(2):121.[doi:10.3969/j.issn.1005-202X.2017.02.003]
 Dosimetric comparison of three intensity- modulated radiotherapies for non- small- cell lung[J].Chinese Journal of Medical Physics,2017,34(7):121.[doi:10.3969/j.issn.1005-202X.2017.02.003]
[9]戴相昆,曲宝林,杜乐辉,等.断层径照技术在非小细胞肺癌放疗中的应用[J].中国医学物理学杂志,2017,34(2):126.[doi:10.3969/j.issn.1005-202X.2017.02.004]
 Application of Tomo Direct in the radiotherapy of non-small cell lung cancer[J].Chinese Journal of Medical Physics,2017,34(7):126.[doi:10.3969/j.issn.1005-202X.2017.02.004]
[10]马长升,马长东,李殊吏,等.非小细胞肺癌放疗中靶区和危及器官真实剂量体积直方图[J].中国医学物理学杂志,2017,34(7):702.[doi:10.3969/j.issn.1005-202X.2017.07.011]
[11]沙雪,巩贯忠,邓红彬,等. 18F-FDG PET/CT影像组学预测非小细胞肺癌亚型的研究[J].中国医学物理学杂志,2019,36(3):311.[doi:DOI:10.3969/j.issn.1005-202X.2019.03.013]
 SHA Xue,GONG Guanzhong,DENG Hongbin,et al. 18F-FDG PET/CT radiomic features for predicting the subtypes of non-small-cell lung cancer[J].Chinese Journal of Medical Physics,2019,36(7):311.[doi:DOI:10.3969/j.issn.1005-202X.2019.03.013]
[12]卢孔尧,黄钢,左艳.非小细胞肺癌淋巴结转移预测模型研究[J].中国医学物理学杂志,2022,39(2):182.[doi:DOI:10.3969/j.issn.1005-202X.2022.02.009]
 LU Kongyao,HUANG Gang,ZUO Yan.Prediction model for lymph node metastasis in non-small cell lung cancer[J].Chinese Journal of Medical Physics,2022,39(7):182.[doi:DOI:10.3969/j.issn.1005-202X.2022.02.009]
[13]戴倩,王梦,黄钢.基于18F-FDG PET CT影像组学的非小细胞肺癌病理亚型分类[J].中国医学物理学杂志,2023,40(4):416.[doi:DOI:10.3969/j.issn.1005-202X.2023.04.004]
 DAI Qian,WANG Meng,HUANG Gang.Classification of pathological subtypes of non-small-cell lung cancer based on 18F-FDG PET CT radiomics[J].Chinese Journal of Medical Physics,2023,40(7):416.[doi:DOI:10.3969/j.issn.1005-202X.2023.04.004]
[14]周洁,郑燕婷,江舒琪,等.CT影像组学联合形态学特征模型评估非小细胞肺癌患者预后生存期的价值[J].中国医学物理学杂志,2024,41(1):18.[doi:DOI:10.3969/j.issn.1005-202X.2024.01.003]
 ZHOU Jie,ZHENG Yanting,JIANG Shuqi,et al.Value of CT radiomics combined with morphological features in predicting the prognosis of patients with non-small cell lung cancer[J].Chinese Journal of Medical Physics,2024,41(7):18.[doi:DOI:10.3969/j.issn.1005-202X.2024.01.003]

备注/Memo

备注/Memo:
【收稿日期】2023-04-07 【基金项目】广东省医学科研基金(A2023291) 【作者简介】周露,工程师,研究方向:肿瘤放射物理,E-mail: zhoulu6105189@126.com 【通信作者】吴书裕,工程师,研究方向:肿瘤放射物理,E-mail: wsyeasy@outlook.com
更新日期/Last Update: 2023-07-15