[1]刘一蓉,张恺,吴剑.脑胶质瘤切除术中辅助检测与精准操作技术概况[J].中国医学物理学杂志,2023,40(2):163-169.[doi:DOI:10.3969/j.issn.1005-202X.2023.02.006]
 LIU Yirong,ZHANG Kai,et al.Introperative auxiliary detection and precise operation techniques in glioma resection[J].Chinese Journal of Medical Physics,2023,40(2):163-169.[doi:DOI:10.3969/j.issn.1005-202X.2023.02.006]
点击复制

脑胶质瘤切除术中辅助检测与精准操作技术概况()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
40卷
期数:
2023年第2期
页码:
163-169
栏目:
医学影像物理
出版日期:
2023-03-03

文章信息/Info

Title:
Introperative auxiliary detection and precise operation techniques in glioma resection
文章编号:
1005-202X(2023)02-0163-07
作者:
刘一蓉12张恺3吴剑2
1.清华大学医学院, 北京 100084; 2.清华大学深圳国际研究生院, 广东 深圳 518055; 3.天津中医药大学第一附属医院神经外科, 天津 300381
Author(s):
LIU Yirong1 2 ZHANG Kai3 WU Jian2
1. School of Medicine, Tsinghua University, Beijing 100084, China 2. Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China 3. Department of Neurosurgery, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
关键词:
脑胶质瘤术中检测精准操作技术辅助检测技术综述
Keywords:
Keywords: glioma intraoperative detection precise operation technique auxiliary detection technique review
分类号:
R739.4;R816.1
DOI:
DOI:10.3969/j.issn.1005-202X.2023.02.006
文献标志码:
A
摘要:
围绕胶质瘤术中的辅助检测与精准操作技术应用,论述磁共振成像、超声成像、荧光显像技术、表面增强拉曼散射技术等多种辅助技术和方法在胶质瘤术中环境应用上的优缺点,并探讨了偏振光学成像技术在脑胶质瘤术中残余检测的可行性,通过现有技术的对比分析,提出未来研究方向。
Abstract:
Abstract: This review focused on the application of auxiliary detection and precise operation techniques in glioma surgery and discussed the advantages and disadvantages of various introperative auxiliary techniques (e.g., magnetic resonance imaging, ultrasonic imaging, fluorescence imaging and surface enhanced Raman scattering technique) used during the glioma surgery. Besides, the feasibility of the polarization imaging technique applied in the residual detection is also discussed. Finally, the future research prospects are put forward based on the analysis and discussion of existing techniques.

相似文献/References:

[1]周 钢,田 野,陆雪官,等.同步加量技术应用于脑胶质瘤术后调强放疗的剂量学研究[J].中国医学物理学杂志,2014,31(02):4727.[doi:10.3969/j.issn.1005-202X.2014.02.002]
[2]戴红娅,黄江华,陈露,等. RapidArc和IMRT在脑胶质瘤术后放疗中保护海马的剂量学比较[J].中国医学物理学杂志,2018,35(12):1404.[doi:DOI:10.3969/j.issn.1005-202X.2018.12.007]
 DAI Hongya,HUANG Jianghua,CHEN Lu,et al. Dosimetric comparison of RapidArc and IMRT in hippocampus sparing during postoperative radiotherapy for glioma[J].Chinese Journal of Medical Physics,2018,35(2):1404.[doi:DOI:10.3969/j.issn.1005-202X.2018.12.007]
[3]郭飞宝.高分级脑胶质瘤4种同步加量调强放射治疗的剂量学分析[J].中国医学物理学杂志,2019,36(12):1396.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.006]
 GUO Feibao.Dosimetric analysis of 4 types of simultaneous integrated boost radiotherapy for high-grade glioma[J].Chinese Journal of Medical Physics,2019,36(2):1396.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.006]
[4]段欢欢,李书舟,曹瑛,等.基于深度学习方法预测IMRT计划射野的γ通过率[J].中国医学物理学杂志,2021,38(6):677.[doi:DOI:10.3969/j.issn.1005-202X.2021.06.004]
 . School of Nuclear Science and Technology,University of South China,Hengyang 00,et al.Predicting gamma passing rates for intensity-modulated radiotherapy fields based on deep learning method[J].Chinese Journal of Medical Physics,2021,38(2):677.[doi:DOI:10.3969/j.issn.1005-202X.2021.06.004]
[5]黄唯,徐中标,邓官华,等.MRI拉莫尔频率范围内人体脑胶质瘤组织的介电特性[J].中国医学物理学杂志,2021,38(12):1538.[doi:DOI:10.3969/j.issn.1005-202X.2021.12.015]
 HUANG Wei,XU Zhongbiao,DENG Guanhua,et al.Dielectric properties of human glioma tissue at Larmor frequencies in MRI[J].Chinese Journal of Medical Physics,2021,38(2):1538.[doi:DOI:10.3969/j.issn.1005-202X.2021.12.015]
[6]袁红杰,杨艳,张东,等.基于多监督注意力机制神经网络的脑胶质瘤循环肿瘤细胞分割算法[J].中国医学物理学杂志,2022,39(7):828.[doi:DOI:10.3969/j.issn.1005-202X.2022.07.007]
 YUAN Hongjie,YANG Yan,ZHANG Dong,et al.Neural network-based multi-level supervision and attention mechanism algorithm for brain glioma CTC segmentation[J].Chinese Journal of Medical Physics,2022,39(2):828.[doi:DOI:10.3969/j.issn.1005-202X.2022.07.007]
[7]王瑞,刘志强,齐崇,等.基于3D深度残差网络和多模态MRI的脑胶质瘤自动分级[J].中国医学物理学杂志,2022,39(10):1236.[doi:DOI:10.3969/j.issn.1005-202X.2022.10.010]
 WANG Rui,LIU Zhiqiang,QI Chong,et al.Automated glioma grading based on 3D deep residual network and multimodal MRI[J].Chinese Journal of Medical Physics,2022,39(2):1236.[doi:DOI:10.3969/j.issn.1005-202X.2022.10.010]
[8]计亚荣,王瑜,肖洪兵,等.基于TensorMixup的脑胶质瘤全自动分割[J].中国医学物理学杂志,2022,39(12):1502.[doi:DOI:10.3969/j.issn.1005-202X.2022.12.008]
 JI Yarong,WANG Yu,XIAO Hongbing,et al.Fully automated glioma segmentation based on TensorMixup[J].Chinese Journal of Medical Physics,2022,39(2):1502.[doi:DOI:10.3969/j.issn.1005-202X.2022.12.008]
[9]游慧霞,张怀岺.深度学习和影像组学在脑胶质瘤诊疗中的研究进展[J].中国医学物理学杂志,2023,40(12):1502.[doi:DOI:10.3969/j.issn.1005-202X.2023.12.008]
 YOU Huixia,ZHANG Huailing.Deep learning and radiomics in diagnosis and treatment of glioma: a review[J].Chinese Journal of Medical Physics,2023,40(2):1502.[doi:DOI:10.3969/j.issn.1005-202X.2023.12.008]

备注/Memo

备注/Memo:
【收稿日期】2022-10-11 【基金项目】国家重点研发计划(2019YFC0119500);院海外合作科研基金(HW2018005);广东省自然科学基金(2021a1515220113);深圳基金基础研究项目知识创新计划(JCYJ20160428182053361,JCY20200109142805928) 【作者简介】刘一蓉,博士在读,主要研究方向:光学偏振技术的肿瘤识别与检测,E-mail: liuyr18@mails.tsinghua.edu.cn 【通信作者】吴剑,博士,副教授,研究方向:手术导航、偏振内窥技术、医学图像处理等,E-mail: wuj@sz.tsinghua.edu.cn
更新日期/Last Update: 2023-03-03