相似文献/References:
[1]周 钢,田 野,陆雪官,等.同步加量技术应用于脑胶质瘤术后调强放疗的剂量学研究[J].中国医学物理学杂志,2014,31(02):4727.[doi:10.3969/j.issn.1005-202X.2014.02.002]
[2]戴红娅,黄江华,陈露,等. RapidArc和IMRT在脑胶质瘤术后放疗中保护海马的剂量学比较[J].中国医学物理学杂志,2018,35(12):1404.[doi:DOI:10.3969/j.issn.1005-202X.2018.12.007]
DAI Hongya,HUANG Jianghua,CHEN Lu,et al. Dosimetric comparison of RapidArc and IMRT in hippocampus sparing during postoperative radiotherapy for glioma[J].Chinese Journal of Medical Physics,2018,35(2):1404.[doi:DOI:10.3969/j.issn.1005-202X.2018.12.007]
[3]郭飞宝.高分级脑胶质瘤4种同步加量调强放射治疗的剂量学分析[J].中国医学物理学杂志,2019,36(12):1396.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.006]
GUO Feibao.Dosimetric analysis of 4 types of simultaneous integrated boost radiotherapy for high-grade glioma[J].Chinese Journal of Medical Physics,2019,36(2):1396.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.006]
[4]段欢欢,李书舟,曹瑛,等.基于深度学习方法预测IMRT计划射野的γ通过率[J].中国医学物理学杂志,2021,38(6):677.[doi:DOI:10.3969/j.issn.1005-202X.2021.06.004]
. School of Nuclear Science and Technology,University of South China,Hengyang 00,et al.Predicting gamma passing rates for intensity-modulated radiotherapy fields based on deep learning method[J].Chinese Journal of Medical Physics,2021,38(2):677.[doi:DOI:10.3969/j.issn.1005-202X.2021.06.004]
[5]黄唯,徐中标,邓官华,等.MRI拉莫尔频率范围内人体脑胶质瘤组织的介电特性[J].中国医学物理学杂志,2021,38(12):1538.[doi:DOI:10.3969/j.issn.1005-202X.2021.12.015]
HUANG Wei,XU Zhongbiao,DENG Guanhua,et al.Dielectric properties of human glioma tissue at Larmor frequencies in MRI[J].Chinese Journal of Medical Physics,2021,38(2):1538.[doi:DOI:10.3969/j.issn.1005-202X.2021.12.015]
[6]袁红杰,杨艳,张东,等.基于多监督注意力机制神经网络的脑胶质瘤循环肿瘤细胞分割算法[J].中国医学物理学杂志,2022,39(7):828.[doi:DOI:10.3969/j.issn.1005-202X.2022.07.007]
YUAN Hongjie,YANG Yan,ZHANG Dong,et al.Neural network-based multi-level supervision and attention mechanism algorithm for brain glioma CTC segmentation[J].Chinese Journal of Medical Physics,2022,39(2):828.[doi:DOI:10.3969/j.issn.1005-202X.2022.07.007]
[7]王瑞,刘志强,齐崇,等.基于3D深度残差网络和多模态MRI的脑胶质瘤自动分级[J].中国医学物理学杂志,2022,39(10):1236.[doi:DOI:10.3969/j.issn.1005-202X.2022.10.010]
WANG Rui,LIU Zhiqiang,QI Chong,et al.Automated glioma grading based on 3D deep residual network and multimodal MRI[J].Chinese Journal of Medical Physics,2022,39(2):1236.[doi:DOI:10.3969/j.issn.1005-202X.2022.10.010]
[8]计亚荣,王瑜,肖洪兵,等.基于TensorMixup的脑胶质瘤全自动分割[J].中国医学物理学杂志,2022,39(12):1502.[doi:DOI:10.3969/j.issn.1005-202X.2022.12.008]
JI Yarong,WANG Yu,XIAO Hongbing,et al.Fully automated glioma segmentation based on TensorMixup[J].Chinese Journal of Medical Physics,2022,39(2):1502.[doi:DOI:10.3969/j.issn.1005-202X.2022.12.008]
[9]游慧霞,张怀岺.深度学习和影像组学在脑胶质瘤诊疗中的研究进展[J].中国医学物理学杂志,2023,40(12):1502.[doi:DOI:10.3969/j.issn.1005-202X.2023.12.008]
YOU Huixia,ZHANG Huailing.Deep learning and radiomics in diagnosis and treatment of glioma: a review[J].Chinese Journal of Medical Physics,2023,40(2):1502.[doi:DOI:10.3969/j.issn.1005-202X.2023.12.008]