[1]戴倩,王梦,黄钢.基于18F-FDG PET CT影像组学的非小细胞肺癌病理亚型分类[J].中国医学物理学杂志,2023,40(4):416-422.[doi:DOI:10.3969/j.issn.1005-202X.2023.04.004]
 DAI Qian,WANG Meng,HUANG Gang.Classification of pathological subtypes of non-small-cell lung cancer based on 18F-FDG PET CT radiomics[J].Chinese Journal of Medical Physics,2023,40(4):416-422.[doi:DOI:10.3969/j.issn.1005-202X.2023.04.004]
点击复制

基于18F-FDG PET CT影像组学的非小细胞肺癌病理亚型分类()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
40卷
期数:
2023年第4期
页码:
416-422
栏目:
医学影像物理
出版日期:
2023-04-25

文章信息/Info

Title:
Classification of pathological subtypes of non-small-cell lung cancer based on 18F-FDG PET CT radiomics
文章编号:
1005-202X(2023)04-0416-07
作者:
戴倩1王梦1黄钢2
1.上海理工大学健康科学与工程学院, 上海 200093; 2.上海健康医学院上海分子影像学重点实验室, 上海 201318
Author(s):
DAI Qian1 WANG Meng1 HUANG Gang2
1. School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China 2. Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
关键词:
影像组学非小细胞肺癌18F-FDG PET CT病理亚型机器学习
Keywords:
Keywords: radiomics non-small-cell lung cancer 18F-FDG PET/CT pathological subtype machine learning
分类号:
R318;R734.2
DOI:
DOI:10.3969/j.issn.1005-202X.2023.04.004
文献标志码:
A
摘要:
目的:旨在建立一种基于18F-FDG PET CT的临床—影像组学相结合的综合模型用于区分非小细胞肺癌中的腺癌和鳞癌。方法:回顾性收集上海交通大学附属胸科医院120例经病理学验证为腺癌(65例)和鳞癌(55例)的患者,从预处理的CT图像和PET图像中分别提取1 218、108个影像组学特征,并纳入10个临床特征因素;卡方检验和Wilcoxon检验用于对临床特征进行筛选,并使用Relief算法和最小绝对收缩和选择算子(LASSO)对影像组学特征进行筛选;通过6种机器学习分类器分别建立临床、影像组学、综合模型。通过受试者工作特征(ROC)曲线及曲线下面积(AUC)来评价模型的分类能力。结果:综合模型在训练集和测试集中均表现出最高的AUC值和准确率,其中随机森林(RF)和Bagging分类器表现出的分类效果最佳。经五折交叉验证后,训练集中RF和Bagging的AUC值和准确率分别为0.92±0.03、0.86±0.06和0.92±0.02、0.83±0.02;测试集中RF和Bagging的AUC值和准确率分别为0.92、0.81和0.91、0.86。结论:结合18F-FDG PET CT临床特征和影像组学特征的分类预测模型可以很好地区分腺癌、鳞癌。
Abstract:
Abstract: Objective To establish a comprehensive clinical-radiomics model based on 18F-FDG PET/CT for differentiating adenocarcinoma and squamous cell carcinoma in non-small-cell lung cancer. Methods A total of 120 cases of pathologically verified adenocarcinoma (n=65) and squamous cell carcinoma (n=55) from Shanghai Chest Hospital were collected retrospectively. In addition to 1 218 and 108 radiomics signatures extracted from the preprocessed CT images and PET images, 10 clinical features were included. Chi-square test and Wilcoxon test were used to screen clinical features, and radiomic signatures were screened using Relief algorithm and least absolute shrinkage and selection operator. Six machine learning classifiers were used to build clinical, radiomics, and comprehensive models. The classification ability of the model was evaluated using receiver operating characteristic (ROC) curve and area under curve (AUC). Results The comprehensive model exhibited the highest AUC and accuracy in both training and test sets, with random forest (RF) and Bagging classifiers showing the best classification results. After 5-fold cross-validation, the AUC and accuracy of RF in the training set were 0.92±0.03, 0.86±0.06, while those of Bagging were 0.92±0.02, 0.83±0.02. In the test set, RF and Bagging also had the optimal classification performances (RF: AUC=0.92, accuracy=0.81 Bagging: AUC=0.91, accuracy=0.86). Conclusion The classification prediction model combining 18F-FDG PET/CT clinical features and radiomics signatures can be well used to distinguish adenocarcinoma and squamous cell carcinoma.

相似文献/References:

[1]刘旭红,陈 晓,赵 彪,等.非小细胞肺癌三维适形计划和调强计划剂量学比较与分析[J].中国医学物理学杂志,2014,31(02):4740.[doi:10.3969/j.issn.1005-202X.2014.02.005]
[2]黄宝添,吴丽丽,陈创珍,等.AXB与AAA算法在Ⅰ期非小细胞肺癌立体定向治疗中的剂量学比较[J].中国医学物理学杂志,2014,31(03):4881.[doi:10.3969/j.issn.1005-202X.2014.03.008]
[3]李 毅,李文荣,苏 进,等.基于CBCT非小细胞肺癌外放边界研究[J].中国医学物理学杂志,2014,31(04):5006.[doi:10.3969/j.issn.1005-202X.2014.04.008]
[4]陈旎,等.III期非小细胞肺癌三维适形与调强技术的剂量学比较[J].中国医学物理学杂志,2016,33(2):198.[doi:10.3969/j.issn.1005-202X.2016.02.019]
[5]李毅,唐丰文,张晓智. 基于四维CT和锥形束CT确定非小细胞肺癌放疗靶区外放边界[J].中国医学物理学杂志,2016,33(9):892.[doi:10.3969/j.issn.1005-202X.2016.09.005]
 [J].Chinese Journal of Medical Physics,2016,33(4):892.[doi:10.3969/j.issn.1005-202X.2016.09.005]
[6]王锐濠,张书旭,谭剑明,等.最小机器跳数对非小细胞肺癌调强放疗计划设计的影响[J].中国医学物理学杂志,2016,33(11):1092.[doi:10.3969/j.issn.1005-202X.2016.11.003]
 [J].Chinese Journal of Medical Physics,2016,33(4):1092.[doi:10.3969/j.issn.1005-202X.2016.11.003]
[7]朱晟超,王远军.锥形束CT对非小细胞肺癌放疗摆位误差及放疗射线剂量的影响锥形束CT对非小细胞肺癌放疗摆位误差及放疗射线剂量的影响[J].中国医学物理学杂志,2017,34(2):109.[doi:10.3969/j.issn.1005-202X.2017.02.001]
 Effect of cone beam CT on setup error and radiation dose distribution in radiotherapy for nonsmall[J].Chinese Journal of Medical Physics,2017,34(4):109.[doi:10.3969/j.issn.1005-202X.2017.02.001]
[8]宋明永,戴相昆,杜乐辉,等.3种调强放疗方式治疗非小细胞肺癌的剂量学比较[J].中国医学物理学杂志,2017,34(2):121.[doi:10.3969/j.issn.1005-202X.2017.02.003]
 Dosimetric comparison of three intensity- modulated radiotherapies for non- small- cell lung[J].Chinese Journal of Medical Physics,2017,34(4):121.[doi:10.3969/j.issn.1005-202X.2017.02.003]
[9]戴相昆,曲宝林,杜乐辉,等.断层径照技术在非小细胞肺癌放疗中的应用[J].中国医学物理学杂志,2017,34(2):126.[doi:10.3969/j.issn.1005-202X.2017.02.004]
 Application of Tomo Direct in the radiotherapy of non-small cell lung cancer[J].Chinese Journal of Medical Physics,2017,34(4):126.[doi:10.3969/j.issn.1005-202X.2017.02.004]
[10]马长升,马长东,李殊吏,等.非小细胞肺癌放疗中靶区和危及器官真实剂量体积直方图[J].中国医学物理学杂志,2017,34(7):702.[doi:10.3969/j.issn.1005-202X.2017.07.011]
[11]沙雪,巩贯忠,邓红彬,等. 18F-FDG PET/CT影像组学预测非小细胞肺癌亚型的研究[J].中国医学物理学杂志,2019,36(3):311.[doi:DOI:10.3969/j.issn.1005-202X.2019.03.013]
 SHA Xue,GONG Guanzhong,DENG Hongbin,et al. 18F-FDG PET/CT radiomic features for predicting the subtypes of non-small-cell lung cancer[J].Chinese Journal of Medical Physics,2019,36(4):311.[doi:DOI:10.3969/j.issn.1005-202X.2019.03.013]
[12]卢孔尧,黄钢,左艳.非小细胞肺癌淋巴结转移预测模型研究[J].中国医学物理学杂志,2022,39(2):182.[doi:DOI:10.3969/j.issn.1005-202X.2022.02.009]
 LU Kongyao,HUANG Gang,ZUO Yan.Prediction model for lymph node metastasis in non-small cell lung cancer[J].Chinese Journal of Medical Physics,2022,39(4):182.[doi:DOI:10.3969/j.issn.1005-202X.2022.02.009]
[13]周露,王琳婧,张国前,等.基于影像组学和剂量组学的放射性肺炎预测研究[J].中国医学物理学杂志,2023,40(7):808.[doi:DOI:10.3969/j.issn.1005-202X.2023.07.003]
 ZHOU Lu,WANG Linjing,ZHANG Guoqian,et al.Prediction of radiation pneumonitis based on radiomics and dosiomics[J].Chinese Journal of Medical Physics,2023,40(4):808.[doi:DOI:10.3969/j.issn.1005-202X.2023.07.003]
[14]周洁,郑燕婷,江舒琪,等.CT影像组学联合形态学特征模型评估非小细胞肺癌患者预后生存期的价值[J].中国医学物理学杂志,2024,41(1):18.[doi:DOI:10.3969/j.issn.1005-202X.2024.01.003]
 ZHOU Jie,ZHENG Yanting,JIANG Shuqi,et al.Value of CT radiomics combined with morphological features in predicting the prognosis of patients with non-small cell lung cancer[J].Chinese Journal of Medical Physics,2024,41(4):18.[doi:DOI:10.3969/j.issn.1005-202X.2024.01.003]

备注/Memo

备注/Memo:
【收稿日期】2022-11-08 【基金项目】国家自然科学基金(82127807);上海市分子影像学重点实验室建设项目(18DZ2260400) 【作者简介】戴倩,硕士,研究方向:医学图像处理,E-mail: 763336113@qq.com 【通信作者】黄钢,博士,研究方向:核医学分子影像,E-mail: huanggang@sumhs.cn
更新日期/Last Update: 2023-04-25