[1]张瑞萍,刘应龙,张文静,等.基于人工智能的多模态影像辅助海马体自动勾画研究[J].中国医学物理学杂志,2022,39(3):390-396.[doi:DOI:10.3969/j.issn.1005-202X.2022.03.021]
 ZHANG Ruiping,LIU Yinglong,ZHANG Wenjing,et al.Auto-segmentation of the hippocampus in multimodal image using artificial intelligence[J].Chinese Journal of Medical Physics,2022,39(3):390-396.[doi:DOI:10.3969/j.issn.1005-202X.2022.03.021]
点击复制

基于人工智能的多模态影像辅助海马体自动勾画研究()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
39卷
期数:
2022年第3期
页码:
390-396
栏目:
医学人工智能
出版日期:
2022-03-28

文章信息/Info

Title:
Auto-segmentation of the hippocampus in multimodal image using artificial intelligence
文章编号:
1005-202X(2022)03-0390-07
作者:
张瑞萍1刘应龙2张文静3戴卓捷4陈昌舜1李东博1付春鹏1杨睿1 张军君1章卫5贾乐成2
1.清华大学第一附属医院放疗科, 北京 100016; 2.深圳市联影高端医疗装备创新研究院, 广东 深圳 518045; 3.清华大学第一附属医院医务处, 北京 100016; 4.北京联影智能影像技术研究院, 北京 100094; 5.上海联影医疗科技股份有限公司, 上海 201807
Author(s):
ZHANG Ruiping1 LIU Yinglong2 ZHANG Wenjing3 DAI Zhuojie4 CHEN Changshun1 LI Dongbo1 FU Chunpeng1 YANG Rui1 ZHANG Junjun1 ZHANG Wei5 JIA Lecheng2
1. Department of Radiotherapy, the First Hospital of Tsinghua University, Beijing 100016, China 2. Shenzhen United Imaging High-end Medical Equipment Innovation Research Institute, Shenzhen 518045, China 3. Division of Medical Services, the First Hospital of Tsinghua University, Beijing 100016, China 4. Beijing United Imaging Intelligent Technology Research Institute, Beijing 100094, China 5. Shanghai United Imaging Technology Co., Ltd, Shanghai 201807, China
关键词:
人工智能深度学习多模态影像海马体自动勾画
Keywords:
Keywords: artificial intelligence deep learning multimodal image hippocampus automatic segmentation
分类号:
R318
DOI:
DOI:10.3969/j.issn.1005-202X.2022.03.021
文献标志码:
A
摘要:
目的:利用基于深度学习的人工智能算法,结合头颅MRI和CT的多模态影像,开发海马结构自动勾画技术,为头颅放疗过程中海马体的保护提供高效、准确的自动勾画方法。方法:收集清华大学第一附属医院放疗科从2020年1月~12月就诊的40例脑转移癌患者的定位头颅CT及MRI影像,分别在CT图像、CT-MRI配准图像的两个数据集上训练3D U-Net、3D U-Net Cascade、3D BUC-Net 3个深度学习模型,计算3个模型自动分割的左右海马体与对应的人工标注之间的Dice相似系数(DSC)和95%豪斯多夫距离(95 HD),以及两者的体积作为模型的分割准确性的评估,并且以对同一大小patch图像的自动分割耗时作为模型效率的评估。结果:引入MRI图像信息对左右海马的自动分割精度有明显的提升;模型3D BUC-Net在CT-MRI数据集上对左右海马体的自动分割都取得最好分割结果(DSC:0.900±0.017,0.882±0.026;95HD:0.792±0.084,0.823±0.093),而且该模型的分割效率更高。结论:模型3D BUC-Net能在多模态影像上实现高效、准确的海马区的自动勾画,为头颅放疗过程中海马区的保护提供方便。
Abstract:
Objective To develop a technique for auto-segmentation of the hippocampal using artificial intelligence based on deep learning in the multimodal image combining magnetic resonance imaging (MRI) with computed tomography (CT), thereby providing an efficient and accurate automatic segmentation method for hippocampus sparing in cranial radiotherapy. Methods The cranial CT and MRI images of 40 patients with brain metastases treated in the Department of Radiotherapy, the First Affiliated Hospital of Tsinghua University from January 2020 to December 2020 were collected. Three kinds of deep learning models, namely 3D U-Net, 3D U-Net Cascade and 3D BUC-Net, were trained on the datasets of CT images and CT-MRI registration images separately. The Dice similarity coefficient (DSC) and 95% Hausdorff distance (95HD) between the contours of left and right hippocampus segmented automatically by models and labelde by experts, as well as the hippocampus volume were used for evaluating the segmentation accuracy of models. The time taken for auto-segmentation on the same a patch of 3D image was used to assess the efficiency of models. Results The auto-segmentation accuracy of left and right hippocampus was improved significantly by importing MRI information to CT. Among 3 kinds of models, 3D BUC-Net model had the best segmentation performance for both left and right hippocampus on CT-MRI dataset (DSC: 0.900±0.017, 0.882±0.026 95HD: 0.792±0.084, 0.823±0.093), and its segmentation efficiency was the highest. Conclusion 3D BUC-Net model can achieve more efficient and accurate automatic segmentation of the hippocampus in multimodal image, which provides a lot of convenience for the hippocampus sparing during cranial radiotherapy.

相似文献/References:

[1]王弈,李传富.人工智能方法在医学图像处理中的研究新进展[J].中国医学物理学杂志,2013,30(03):4138.[doi:10.3969/j.issn.1005-202X.2013.03.013]
[2]王亚,李永欣,黄文华.人类脑计划的研究进展[J].中国医学物理学杂志,2016,33(2):109.[doi:10.3969/j.issn.1005-202X.2016.02.001]
 [J].Chinese Journal of Medical Physics,2016,33(3):109.[doi:10.3969/j.issn.1005-202X.2016.02.001]
[3]陶源,王佳飞,杜俊龙,等.基于卷积神经网络的细胞识别[J].中国医学物理学杂志,2017,34(1):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
 [J].Chinese Journal of Medical Physics,2017,34(3):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
[4]祁红琳,胡先玲,李传明,等. 基于MRI纹理特征的早期肝癌术后复发预测[J].中国医学物理学杂志,2017,34(9):908.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.010]
 [J].Chinese Journal of Medical Physics,2017,34(3):908.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.010]
[5]门阔,戴建荣. 利用深度反卷积神经网络自动勾画放疗危及器官[J].中国医学物理学杂志,2018,35(3):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
 MEN Kuo,DAI Jianrong. Automatic segmentation of organs at risk in radiotherapy using deep deconvolutional neural network[J].Chinese Journal of Medical Physics,2018,35(3):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
[6]邓金城,彭应林,刘常春,等. 深度卷积神经网络在放射治疗计划图像分割中的应用[J].中国医学物理学杂志,2018,35(6):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
 DENG Jincheng,PENG Yinglin,LIU Changchun,et al. Application of deep convolution neural network in radiotherapy planning image segmentation[J].Chinese Journal of Medical Physics,2018,35(3):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
[7]查雪帆,杨丰,吴俣南,等. 结合迁移学习与深度卷积网络的心电分类研究[J].中国医学物理学杂志,2018,35(11):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
 ZHA Xuefan,YANG Feng,WU Yunan,et al. ECG classification based on transfer learning and deep convolution neural network[J].Chinese Journal of Medical Physics,2018,35(3):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
[8]宫进昌,赵尚义,王远军. 基于深度学习的医学图像分割研究进展[J].中国医学物理学杂志,2019,36(4):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
 GONG Jinchang,ZHAO Shangyi,WANG Yuanjun.Research progress on deep learning-based medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(3):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
[9]安莹,黄能军,杨荣,等. 基于深度学习的心血管疾病风险预测模型[J].中国医学物理学杂志,2019,36(9):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
 AN Ying,HUANG Nengjun,YANG Rong,et al. Deep learning-based model for risk prediction of cardiovascular diseases[J].Chinese Journal of Medical Physics,2019,36(3):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
[10]纪春阳,徐秀林,王燕. 深度神经网络技术在肿瘤细胞识别中的应用[J].中国医学物理学杂志,2019,36(9):1113.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.022]
 JI Chunyang,XU Xiulin,WANG Yan. Application of deep neural network in tumor cell recognition[J].Chinese Journal of Medical Physics,2019,36(3):1113.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.022]
[11]蔡晓琼,郭晶磊,黄继汉,等.人工智能技术在新型冠状病毒肺炎中的应用[J].中国医学物理学杂志,2021,38(7):915.[doi:DOI:10.3969/j.issn.1005-202X.2021.07.024]
 CAI Xiaoqiong,GUO Jinglei,HUANG Jihan,et al.Advances in research on artificial intelligence technology in COVID-19[J].Chinese Journal of Medical Physics,2021,38(3):915.[doi:DOI:10.3969/j.issn.1005-202X.2021.07.024]
[12]曹洋森,朱晓斐,韩妙飞,等.基于级联式深度网络模型的胃及胰腺自动分割研究[J].中国医学物理学杂志,2021,38(8):971.[doi:DOI:10.3969/j.issn.1005-202X.2021.08.010]
 CAO Yangsen,ZHU Xiaofei,HAN Miaofei,et al.Automatic segmentation of the stomach and pancreas using cascaded deep convolutional neural network[J].Chinese Journal of Medical Physics,2021,38(3):971.[doi:DOI:10.3969/j.issn.1005-202X.2021.08.010]
[13]姚红艳,邓兴,陈晓飞,等.腰椎X线摄影人工智能测量技术研究进展[J].中国医学物理学杂志,2021,38(12):1579.[doi:DOI:10.3969/j.issn.1005-202X.2021.12.022]
 YAO Hongyan,DENG Xing,CHEN Xiaofei,et al.Advances in artificial intelligence technology for parameter measurement in lumbar X-ray photograph[J].Chinese Journal of Medical Physics,2021,38(3):1579.[doi:DOI:10.3969/j.issn.1005-202X.2021.12.022]
[14]罗思言,王心舟,饶向荣.人工智能在中医诊断中的应用进展[J].中国医学物理学杂志,2022,39(5):647.[doi:DOI:10.3969/j.issn.1005-202X.2022.05.021]
 LUO Siyan,WANG Xinzhou,et al.Advances in the application of artificial intelligence in traditional Chinese medicine diagnosis[J].Chinese Journal of Medical Physics,2022,39(3):647.[doi:DOI:10.3969/j.issn.1005-202X.2022.05.021]
[15]陈鑫龙,叶凯,周文策.人工智能在胰腺疾病新型诊疗模式中的应用及进展[J].中国医学物理学杂志,2022,39(8):1049.[doi:DOI:10.3969/j.issn.1005-202X.2022.08.023]
 CHEN Xinlong,YE Kai,et al.Keywords: artificial intelligence machine learning deep learning pancreatic diseasepancreatitis?ancreatic cancer precision medicine[J].Chinese Journal of Medical Physics,2022,39(3):1049.[doi:DOI:10.3969/j.issn.1005-202X.2022.08.023]
[16]王新宇,赵静文,刘翔,等.人工智能在肺结节筛查和肺癌诊断中的应用[J].中国医学物理学杂志,2023,40(9):1182.[doi:DOI:10.3969/j.issn.1005-202X.2023.09.020]
 WANG Xinyu,ZHAO Jingwen,LIU Xiang,et al.Applications of artificial intelligence in lung nodule detection and lung cancer diagnosis[J].Chinese Journal of Medical Physics,2023,40(3):1182.[doi:DOI:10.3969/j.issn.1005-202X.2023.09.020]

备注/Memo

备注/Memo:
【收稿日期】2021-12-15 【作者简介】张瑞萍,博士,副主任医师,主要研究方向:肿瘤的精准放疗及综合治疗,E-mail: yuelin2006@126.com
更新日期/Last Update: 2022-03-28