[1]陈鑫龙,叶凯,周文策.人工智能在胰腺疾病新型诊疗模式中的应用及进展[J].中国医学物理学杂志,2022,39(8):1049-1056.[doi:DOI:10.3969/j.issn.1005-202X.2022.08.023]
 CHEN Xinlong,YE Kai,et al.Keywords: artificial intelligence machine learning deep learning pancreatic diseasepancreatitis?ancreatic cancer precision medicine[J].Chinese Journal of Medical Physics,2022,39(8):1049-1056.[doi:DOI:10.3969/j.issn.1005-202X.2022.08.023]
点击复制

人工智能在胰腺疾病新型诊疗模式中的应用及进展()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
39卷
期数:
2022年第8期
页码:
1049-1056
栏目:
医学人工智能
出版日期:
2022-08-04

文章信息/Info

Title:
Keywords: artificial intelligence machine learning deep learning pancreatic diseasepancreatitis?ancreatic cancer precision medicine
文章编号:
1005-202X(2022)08-1049-08
作者:
陈鑫龙12叶凯3周文策14
1.兰州大学第一临床医学院, 甘肃 兰州 730013; 2.兰州大学第一医院普外科, 甘肃 兰州 730013; 3.兰州大学信息科学与工程学院, 甘肃 兰州 730000; 4.兰州大学第二医院普外科, 甘肃 兰州 730030
Author(s):
CHEN Xinlong1 2 YE Kai3 ZHOU Wence1 4
1. The First Clinical Medicine School, Lanzhou University, Lanzhou 730013, China 2. Department of General Surgery, the First Hospital of Lanzhou University, Lanzhou 730013, China 3. School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China 4. Department of General Surgery, the Second Hospital of Lanzhou University, Lanzhou 730030, China
关键词:
人工智能机器学习深度学习胰腺疾病胰腺炎胰腺癌精准医疗
Keywords:
Keywords: artificial intelligence machine learning deep learning pancreatic diseasepancreatitis?ancreatic cancer precision medicine
分类号:
R318;R576
DOI:
DOI:10.3969/j.issn.1005-202X.2022.08.023
文献标志码:
A
摘要:
基于临床资料、医学影像学、基因组学的计算机诊疗辅助系统在鉴别胰腺囊性疾病、诊断胰腺癌等方面显现出优于传统诊疗方法的潜力。本文综述人工智能在胰腺各类疾病的诊断、预后、预测治疗反应和指导治疗方面的作用,并为胰腺疾病精准医疗、改良目前的临床诊疗模式提供新的思路及方法。
Abstract:
Abstract: The computer-aided diagnosis and treatment system which is based on clinical data, medical imaging and genomics shows the potential to be superior to traditional diagnosis and treatment methods in identifying pancreatic cystic diseases and diagnosing pancreatic cancer.?erein the role of artificial intelligence in the diagnosis, prognosis, prediction of treatment response, and guidance for treatment of various pancreatic diseases are summarized, and some new ideas and methods are put forward for precision medicine for pancreatic diseases and improvement of the current clinical diagnostic and therapeutic pattern.

相似文献/References:

[1]王弈,李传富.人工智能方法在医学图像处理中的研究新进展[J].中国医学物理学杂志,2013,30(03):4138.[doi:10.3969/j.issn.1005-202X.2013.03.013]
[2]王亚,李永欣,黄文华.人类脑计划的研究进展[J].中国医学物理学杂志,2016,33(2):109.[doi:10.3969/j.issn.1005-202X.2016.02.001]
 [J].Chinese Journal of Medical Physics,2016,33(8):109.[doi:10.3969/j.issn.1005-202X.2016.02.001]
[3]王美娇,李莎,岳海振,等. Model Analytics辅助的智能放疗计划建模[J].中国医学物理学杂志,2017,34(9):870.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.002]
 [J].Chinese Journal of Medical Physics,2017,34(8):870.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.002]
[4]祁红琳,胡先玲,李传明,等. 基于MRI纹理特征的早期肝癌术后复发预测[J].中国医学物理学杂志,2017,34(9):908.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.010]
 [J].Chinese Journal of Medical Physics,2017,34(8):908.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.010]
[5]周文,王瑜,肖红兵,等. 基于KPCA算法的阿尔茨海默症辅助诊断[J].中国医学物理学杂志,2018,35(4):404.[doi:DOI:10.3969/j.issn.1005-202X.2018.04.007]
 ZHOU Wen,WANG Yu,XIAO Hongbing,et al. Assisted diagnosis of Alzheimer’s disease based on KPCA algorithm[J].Chinese Journal of Medical Physics,2018,35(8):404.[doi:DOI:10.3969/j.issn.1005-202X.2018.04.007]
[6]余锦娟,林勇. 基于机器学习的骨质疏松性骨折预测研究[J].中国医学物理学杂志,2018,35(11):1329.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.017]
 YU Jinjuan,LIN Yong. Prediction of osteoporotic fractures based on machine learning[J].Chinese Journal of Medical Physics,2018,35(8):1329.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.017]
[7]纪春阳,徐秀林,王燕. 深度神经网络技术在肿瘤细胞识别中的应用[J].中国医学物理学杂志,2019,36(9):1113.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.022]
 JI Chunyang,XU Xiulin,WANG Yan. Application of deep neural network in tumor cell recognition[J].Chinese Journal of Medical Physics,2019,36(8):1113.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.022]
[8]王沛沛,李金凯,李彩虹,等.基于人工智能技术的危及器官自动勾画在胸部肿瘤中的应用[J].中国医学物理学杂志,2019,36(11):1346.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.019]
 WANG Peipei,LI Jinkai,LI Caihong,et al.Application of automatic organs-at-risk segmentation based on artificial intelligence technology in thoracic tumors[J].Chinese Journal of Medical Physics,2019,36(8):1346.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.019]
[9]刘渊,程玉玉,贺睿敏,等.基于机器学习的鼻咽癌转移淋巴结鉴别模型[J].中国医学物理学杂志,2019,36(11):1350.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.020]
 LIU Yuan,CHENG Yuyu,HE Ruimin,et al.Machine learning-based classification model of lymph node metastasis in nasopharyngeal carcinoma[J].Chinese Journal of Medical Physics,2019,36(8):1350.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.020]
[10]孙凯,姚旭峰,马风玲,等.基于机器学习的血细胞分类研究进展[J].中国医学物理学杂志,2020,37(1):127.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.023]
 SUN Kai,YAO Xufeng,et al.Blood cell classification based on machine learning[J].Chinese Journal of Medical Physics,2020,37(8):127.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.023]
[11]陈思佳,石丽婉,林勤.基于知识的放射治疗技术研究[J].中国医学物理学杂志,2020,37(11):1350.[doi:DOI:10.3969/j.issn.1005-202X.2020.11.002]
 CHEN Sijia,SHI Liwan,LIN Qin.Research on knowledge-based radiation therapy[J].Chinese Journal of Medical Physics,2020,37(8):1350.[doi:DOI:10.3969/j.issn.1005-202X.2020.11.002]
[12]李坤鹏,王泽朋,周玉,等.人工智能在肿瘤基因表达数据中的应用研究进展[J].中国医学物理学杂志,2024,41(3):389.[doi:DOI:10.3969/j.issn.1005-202X.2024.03.018]
 LI Kunpeng,WANG Zepeng,ZHOU Yu,et al.Review on application of artificial intelligence in tumor gene expression data analysis[J].Chinese Journal of Medical Physics,2024,41(8):389.[doi:DOI:10.3969/j.issn.1005-202X.2024.03.018]

备注/Memo

备注/Memo:
【收稿日期】2021-11-28 【基金项目】甘肃省科技重点研发计划(17YF1FA128);甘肃省卫生行业科研计划项目(GSWSKY2018-51) 【作者简介】陈鑫龙,硕士研究生,研究方向:肝胆胰外科,E-mail: chenxl2020@lzu.edu.cn 【通信作者】周文策,博士,主任医师,研究方向:肝胆胰外科,E-mail: zhouwc129@163.com
更新日期/Last Update: 2022-09-05