[1]程秀,王俊,王瑞,等.APT、ASL及DCE-MRI在胶质瘤分级诊断中的应用[J].中国医学物理学杂志,2022,39(3):321-327.[doi:DOI:10.3969/j.issn.1005-202X.2022.03.011]
 CHENG Xiu,WANG Jun,et al.Application of APT, ASL and DCE-MRI in glioma grading[J].Chinese Journal of Medical Physics,2022,39(3):321-327.[doi:DOI:10.3969/j.issn.1005-202X.2022.03.011]
点击复制

APT、ASL及DCE-MRI在胶质瘤分级诊断中的应用()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
39卷
期数:
2022年第3期
页码:
321-327
栏目:
医学影像物理
出版日期:
2022-03-28

文章信息/Info

Title:
Application of APT, ASL and DCE-MRI in glioma grading
文章编号:
1005-202X(2022)03-0321-07
作者:
程秀12王俊12王瑞1刘光耀1马来阳1白玉萍1李洁12任新颖12张静1
1.兰州大学第二医院核磁共振科, 甘肃 兰州 730030; 2.兰州大学第二临床医学院, 甘肃 兰州 730030
Author(s):
CHENG Xiu1 2 WANG Jun1 2 WANG Rui1 LIU Guangyao1 MA Laiyang1 BAI Yuping1 LI Jie1 2 REN Xinying1 2 ZHANG Jing1
1. Department of Nuclear Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China 2. The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China
关键词:
胶质瘤酰胺质子转移成像动脉自旋标记技术动态对比增强磁共振成像鉴别诊断
Keywords:
Keywords: glioma amide proton transfer imaging arterial spin labeling technique dynamic contrast-enhanced magnetic resonance imaging differential diagnosis
分类号:
R739.4
DOI:
DOI:10.3969/j.issn.1005-202X.2022.03.011
文献标志码:
A
摘要:
目的:探讨酰胺质子转移成像(APT)、动脉自旋标记技术(ASL)、动态对比增强磁共振成像(DCE-MRI)等多模态MRI技术对胶质瘤术前分级诊断的价值。方法:前瞻性收集41例经病理证实的胶质瘤患者,其中低级别胶质瘤(LGG)18例、高级别胶质瘤(HGG)23例。由2名医生独立测量获取肿瘤实质区的平均APT(mAPT)、平均脑血流量(mCBF)、平均容积转运常数(mKtrans),并计算测量者之间的一致性系数(ICC)。采用受试者工作特征曲线比较各参数区分LGG和HGG的诊断效能,并对不同成像技术的AUC进行比较,最后采用二元逻辑回归的方法进行多模态联合评估。结果:测量者之间一致性良好。HGG肿瘤实质区的mAPT、mCBF、mKtrans均大于LGG,差异均具有统计学意义(P<0.05)。当独立应用于分级诊断时,mAPT、mCBF、mKtrans的 AUC分别为0.96、0.91、0.93;mAPT、mCBF、mKtrans敏感性分别为0.91、0.91、0.83;mKtrans、mAPT、mCBF特异性分别为1.00、0.94、0.83。当联合应用于分级诊断时,3种成像技术联合显示出最佳诊断效能。三者联合的AUC可达1.00,mAPT联合mCBF、mCBF联合mKtrans、mAPT联合mKtrans的AUC分别为0.99、0.99、 0.97;三者联合的敏感性可达1.00,mAPT联合mCBF、mCBF联合mKtrans 、mAPT联合mKtrans的敏感性分别为0.96、0.96、0.91;三者联合的特异性为0.94,其中任意两者联合的特异性均可达1.00。结论:APT、ASL、DCE-MRI这3种技术对胶质瘤术前分级均显示出良好的诊断价值,其中APT诊断效能最好,ASL最差,3种技术的AUC无统计学差异。当联合应用于分级诊断时,可提高鉴别诊断的能力,其中3种技术的联合是强大的胶质瘤分级技术。
Abstract:
Abstract: Objective To explore the value of multimodal magnetic resonance imaging (MRI) techniques such as amide proton transfer imaging (APT), arterial spin labeling (ASL), dynamic contrast-enhanced MRI (DCE-MRI) for the preoperative gliomas grading. Methods Forty-one cases of pathologically confirmed gliomas, including 18 cases of low-grade gliomas (LGG) and 23 cases of high-grade gliomas (HGG), were collected prospectively. Two doctors independently measured the mean APT (mAPT), mean cerebral blood flow (mCBF), mean volume transfer constant (mKtrans) of the tumor parenchymal area and the intraclass correlation coefficient between the measurers was calculated. Receiver operating characteristic (ROC) curve was used to compare the diagnostic efficacy of each parameter to distinguish LGG and HGG, and the AUC was compared between different techniques. Finally, the binary logistic regression method was used for multimodal joint evaluation. Results The consistency between the measurers was good. The mAPT, mCBF, and mKtrans of the parenchymal area of HGG were all greater than those of LGG, with statistical differences (P<0.05). When the technique was applied independently in gliomas grading, the AUC of mAPT, mCBF and mKtrans were 0.96, 0.91 and 0.93, respectively and the sensitivities of mAPT, mCBF and mKtrans were 0.91, 0.91 and 0.83, respectively and the specificities of mKtrans, mAPT and mCBF were 1.00, 0.94 and 0.83, respectively. When combining techniques in gliomas grading, the combination of 3 kinds of techniques had the best diagnostic performance. The AUC of the combination of 3 kinds of techniques, mAPT combined with mCBF, mCBF combined with mKtrans, and mAPT combined with mKtrans were 1.00, 0.99, 0.99 and 0.97, respectively. The sensitivity of the combination of 3 kinds of technologies was up to 1, and that of mAPT combined with mCBF, mCBF combined with mKtrans, and mAPT combined with mKtrans was 0.96, 0.96 and 0.91, respectively. The specificity of the combination of 3 kinds of techniques was 0.94, and that of the combination of any two of them could reach 1.00. Conclusion APT, ASL, and DCE-MRI show good diagnostic value for the preoperative gliomas grading. Among them, APT has the optimal diagnostic efficiency, while the diagnostic efficiency of ASL is the worst. There is no statistical difference in the AUC among 3 kinds of techniques. The combination of different techniques for gliomas grading can improve the ability of differential diagnosis, and the combination of 3 kinds of techniques can become a powerful glioma grading technique.

相似文献/References:

[1]谭泓叶,张晓红,张海黔.银纳米粒子对乏氧胶质瘤细胞的影响[J].中国医学物理学杂志,2017,34(1):89.[doi:10.3969/j.issn.1005-202X.2017.01.018]
 [J].Chinese Journal of Medical Physics,2017,34(3):89.[doi:10.3969/j.issn.1005-202X.2017.01.018]
[2]张国前,张书旭,王锐濠,等. Auto-planning在脑胶质瘤非共面容积调强放疗计划中的应用[J].中国医学物理学杂志,2018,35(5):514.[doi:DOI:10.3969/j.issn.1005-202X.2018.05.004]
 ZHANG Guoqian,ZHANG Shuxu,WANG Ruihao,et al. Application research on Auto-planning in non-coplanar VMAT plan for brain gliomas[J].Chinese Journal of Medical Physics,2018,35(3):514.[doi:DOI:10.3969/j.issn.1005-202X.2018.05.004]
[3]缪雨季,周倬,常青.甲氟喹对胶质瘤细胞的放射增敏作用[J].中国医学物理学杂志,2021,38(1):6.[doi:DOI:10.3969/j.issn.1005-202X.2021.01.002]
 MIAO Yuji,ZHOU Zhuo,CHANG Qing.The radiosensitization effect of mefloquine combined with X-ray on glioma cells[J].Chinese Journal of Medical Physics,2021,38(3):6.[doi:DOI:10.3969/j.issn.1005-202X.2021.01.002]
[4]邓娟,李昇霖,刘显旺,等.影像学评价大鼠胶质瘤及其微环境的研究进展[J].中国医学物理学杂志,2021,38(5):578.[doi:DOI:10.3969/j.issn.1005-202X.2021.05.010]
 DENG Juan,,et al.Advances in research on imaging evaluations of rat glioma and its microenvironment[J].Chinese Journal of Medical Physics,2021,38(3):578.[doi:DOI:10.3969/j.issn.1005-202X.2021.05.010]
[5]张斌,薛彩强,林晓强,等.深度学习在脑胶质瘤影像学的研究进展[J].中国医学物理学杂志,2021,38(8):1048.[doi:DOI:10.3969/j.issn.1005-202X.2021.08.025]
 ZHANG Bin,XUE Caiqiang,LIN Xiaoqiang,et al.Advances in deep learning for brain glioma imaging[J].Chinese Journal of Medical Physics,2021,38(3):1048.[doi:DOI:10.3969/j.issn.1005-202X.2021.08.025]
[6]王瑞,齐崇,孟蓝熙,等.基于3D卷积网络和多模态MRI的脑胶质瘤自动分割[J].中国医学物理学杂志,2022,39(3):300.[doi:DOI:10.3969/j.issn.1005-202X.2022.03.007]
 WANG Rui,QI Chong,MENG Lanxi,et al.Auto-segmentation of glioma based on 3D convolutional network and multimodal MRI[J].Chinese Journal of Medical Physics,2022,39(3):300.[doi:DOI:10.3969/j.issn.1005-202X.2022.03.007]
[7]杨日辉,范伟雄,董婷,等.多序列MR影像组学融合模型预测胶质瘤分级的价值[J].中国医学物理学杂志,2023,40(5):545.[doi:DOI:10.3969/j.issn.1005-202X.2023.05.003]
 YANG Rihui,FAN Weixiong,DONG Ting,et al.Predictive value of multi-sequence MRI radiomics fusion model for glioma grading[J].Chinese Journal of Medical Physics,2023,40(3):545.[doi:DOI:10.3969/j.issn.1005-202X.2023.05.003]

备注/Memo

备注/Memo:
【收稿日期】2021-10-10 【基金项目】国家自然科学基金(81960309);甘肃省自然科学基金(21JR1RA129);兰州大学第二医院“萃英科技”计划(CY2018-QN03);兰州大学第二医院“萃英科技创新”计划(CY2018-MS02) 【作者简介】程秀,硕士研究生,研究方向:神经影像、脑科学,E-mail: 2550851603@qq.com 【通信作者】张静,博士,主任医师,教授,研究方向:神经影像、脑科学、人工智能,E-mail: lztong@163com
更新日期/Last Update: 2022-03-28