[1]卢孔尧,黄钢,左艳.非小细胞肺癌淋巴结转移预测模型研究[J].中国医学物理学杂志,2022,39(2):182-187.[doi:DOI:10.3969/j.issn.1005-202X.2022.02.009]
 LU Kongyao,HUANG Gang,ZUO Yan.Prediction model for lymph node metastasis in non-small cell lung cancer[J].Chinese Journal of Medical Physics,2022,39(2):182-187.[doi:DOI:10.3969/j.issn.1005-202X.2022.02.009]
点击复制

非小细胞肺癌淋巴结转移预测模型研究()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
39卷
期数:
2022年第2期
页码:
182-187
栏目:
医学影像物理
出版日期:
2022-02-26

文章信息/Info

Title:
Prediction model for lymph node metastasis in non-small cell lung cancer
文章编号:
1005-202X(2022)02-0182-06
作者:
卢孔尧1黄钢2左艳1
1.上海理工大学医疗器械与食品学院, 上海 200093; 2.上海健康医学院附属嘉定中心医院上海市分子影像学重点实验室, 上海 201318
Author(s):
LU Kongyao1 HUANG Gang2 ZUO Yan1
1. School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China 2. Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
关键词:
非小细胞肺癌影像组学淋巴结转移机器学习预测模型
Keywords:
Keywords: non-small cell lung cancer radiomics lymph node metastasis machine learning prediction model
分类号:
R318;R734.2
DOI:
DOI:10.3969/j.issn.1005-202X.2022.02.009
文献标志码:
A
摘要:
在非小细胞肺癌的治疗过程中,淋巴结转移状态是决定治疗方案的重要因素。为了辅助临床医生制定更精确的治疗方案,开发并验证了一种基于CT影像组学非小细胞肺癌淋巴结转移的预测模型。从TCIA数据库的NSCLC-Radiogenomics公共数据集中选取了134例符合试验要求的患者数据,然后从每例患者的CT影像数据中提取了1 648个特征,并用特征优化方法进行特征降维和选择,然后用朴素贝叶斯、线性判别分析、支持向量机和高斯过程5种机器学习方法建立预测模型,最后使用上海市胸科医院收集的44例患者数据进行外部验证。其中,最优淋巴结转移预测模型在训练集和测试集上准确率分别为0.802和0.795,AUC值分别为0.852和0.810。试验结果表明,所提出的预测模型分类性能良好,可以辅助医生更准确地评估淋巴结转移状态,从而制定出更精准的个性化治疗方案。
Abstract:
Abstract: In the treatment of non-small cell lung cancer, the state of lymph node metastasis is an important factor when deciding the therapeutic schedule. In order to assist clinicians in formulating a more accurate therapeutic schedule, a CT radiomics-based prediction model for lymph node metastasis in non-small cell lung cancer is developed and validated. The patient data of 134 cases meeting the requirement of experiment are selected from the NSCLC-Radiogenomics public data set in TCIA database, and then 1 648 features are extracted from the CT image data of each patient. After feature reduction and selection by feature optimization method, prediction models are established by different machine learning methods, namely na?e Bayes, linear discriminant analysis, support vector machine and Gaussian process. Finally, patient data collected from 44 cases in Shanghai Chest Hospital are used for external validation. Among the established models, the optimal model for predicting lymph node metastasis has an accuracy of 0.802 and 0.795 in training set and test set, respectively, and the AUC is 0.852 and 0.810, respectively. The experimental results show that the proposed prediction model has good classification performances, and can assist doctors in assessing the state of lymph node metastasis more accurately, so as to develop a more precise and personalized therapeutic schedule.

相似文献/References:

[1]刘旭红,陈 晓,赵 彪,等.非小细胞肺癌三维适形计划和调强计划剂量学比较与分析[J].中国医学物理学杂志,2014,31(02):4740.[doi:10.3969/j.issn.1005-202X.2014.02.005]
[2]黄宝添,吴丽丽,陈创珍,等.AXB与AAA算法在Ⅰ期非小细胞肺癌立体定向治疗中的剂量学比较[J].中国医学物理学杂志,2014,31(03):4881.[doi:10.3969/j.issn.1005-202X.2014.03.008]
[3]李 毅,李文荣,苏 进,等.基于CBCT非小细胞肺癌外放边界研究[J].中国医学物理学杂志,2014,31(04):5006.[doi:10.3969/j.issn.1005-202X.2014.04.008]
[4]陈旎,等.III期非小细胞肺癌三维适形与调强技术的剂量学比较[J].中国医学物理学杂志,2016,33(2):198.[doi:10.3969/j.issn.1005-202X.2016.02.019]
[5]李毅,唐丰文,张晓智. 基于四维CT和锥形束CT确定非小细胞肺癌放疗靶区外放边界[J].中国医学物理学杂志,2016,33(9):892.[doi:10.3969/j.issn.1005-202X.2016.09.005]
 [J].Chinese Journal of Medical Physics,2016,33(2):892.[doi:10.3969/j.issn.1005-202X.2016.09.005]
[6]王锐濠,张书旭,谭剑明,等.最小机器跳数对非小细胞肺癌调强放疗计划设计的影响[J].中国医学物理学杂志,2016,33(11):1092.[doi:10.3969/j.issn.1005-202X.2016.11.003]
 [J].Chinese Journal of Medical Physics,2016,33(2):1092.[doi:10.3969/j.issn.1005-202X.2016.11.003]
[7]朱晟超,王远军.锥形束CT对非小细胞肺癌放疗摆位误差及放疗射线剂量的影响锥形束CT对非小细胞肺癌放疗摆位误差及放疗射线剂量的影响[J].中国医学物理学杂志,2017,34(2):109.[doi:10.3969/j.issn.1005-202X.2017.02.001]
 Effect of cone beam CT on setup error and radiation dose distribution in radiotherapy for nonsmall[J].Chinese Journal of Medical Physics,2017,34(2):109.[doi:10.3969/j.issn.1005-202X.2017.02.001]
[8]宋明永,戴相昆,杜乐辉,等.3种调强放疗方式治疗非小细胞肺癌的剂量学比较[J].中国医学物理学杂志,2017,34(2):121.[doi:10.3969/j.issn.1005-202X.2017.02.003]
 Dosimetric comparison of three intensity- modulated radiotherapies for non- small- cell lung[J].Chinese Journal of Medical Physics,2017,34(2):121.[doi:10.3969/j.issn.1005-202X.2017.02.003]
[9]戴相昆,曲宝林,杜乐辉,等.断层径照技术在非小细胞肺癌放疗中的应用[J].中国医学物理学杂志,2017,34(2):126.[doi:10.3969/j.issn.1005-202X.2017.02.004]
 Application of Tomo Direct in the radiotherapy of non-small cell lung cancer[J].Chinese Journal of Medical Physics,2017,34(2):126.[doi:10.3969/j.issn.1005-202X.2017.02.004]
[10]马长升,马长东,李殊吏,等.非小细胞肺癌放疗中靶区和危及器官真实剂量体积直方图[J].中国医学物理学杂志,2017,34(7):702.[doi:10.3969/j.issn.1005-202X.2017.07.011]
[11]沙雪,巩贯忠,邓红彬,等. 18F-FDG PET/CT影像组学预测非小细胞肺癌亚型的研究[J].中国医学物理学杂志,2019,36(3):311.[doi:DOI:10.3969/j.issn.1005-202X.2019.03.013]
 SHA Xue,GONG Guanzhong,DENG Hongbin,et al. 18F-FDG PET/CT radiomic features for predicting the subtypes of non-small-cell lung cancer[J].Chinese Journal of Medical Physics,2019,36(2):311.[doi:DOI:10.3969/j.issn.1005-202X.2019.03.013]
[12]戴倩,王梦,黄钢.基于18F-FDG PET CT影像组学的非小细胞肺癌病理亚型分类[J].中国医学物理学杂志,2023,40(4):416.[doi:DOI:10.3969/j.issn.1005-202X.2023.04.004]
 DAI Qian,WANG Meng,HUANG Gang.Classification of pathological subtypes of non-small-cell lung cancer based on 18F-FDG PET CT radiomics[J].Chinese Journal of Medical Physics,2023,40(2):416.[doi:DOI:10.3969/j.issn.1005-202X.2023.04.004]
[13]周露,王琳婧,张国前,等.基于影像组学和剂量组学的放射性肺炎预测研究[J].中国医学物理学杂志,2023,40(7):808.[doi:DOI:10.3969/j.issn.1005-202X.2023.07.003]
 ZHOU Lu,WANG Linjing,ZHANG Guoqian,et al.Prediction of radiation pneumonitis based on radiomics and dosiomics[J].Chinese Journal of Medical Physics,2023,40(2):808.[doi:DOI:10.3969/j.issn.1005-202X.2023.07.003]
[14]周洁,郑燕婷,江舒琪,等.CT影像组学联合形态学特征模型评估非小细胞肺癌患者预后生存期的价值[J].中国医学物理学杂志,2024,41(1):18.[doi:DOI:10.3969/j.issn.1005-202X.2024.01.003]
 ZHOU Jie,ZHENG Yanting,JIANG Shuqi,et al.Value of CT radiomics combined with morphological features in predicting the prognosis of patients with non-small cell lung cancer[J].Chinese Journal of Medical Physics,2024,41(2):18.[doi:DOI:10.3969/j.issn.1005-202X.2024.01.003]

备注/Memo

备注/Memo:
【收稿日期】2021-11-05 【基金项目】国家自然科学基金重点项目(81830052);上海市分子影像学重点实验室建设项目(18DZ2260400) 【作者简介】卢孔尧,硕士,主要研究方向:医学图像处理,E-mail: 2734174992@qq.com 【通信作者】黄钢,博士,教授,主要研究方向:核医学分子影像,E-mail: huanggang@sumhs.edu.cn
更新日期/Last Update: 2022-03-07