[1]刘婕,王娆芬,邓源.基于心电信号的自注意力双向门控循环网络疲劳检测模型[J].中国医学物理学杂志,2022,39(5):578-584.[doi:DOI:10.3969/j.issn.1005-202X.2022.05.010]
 LIU Jie,WANG Raofen,DENG Yuan.Self-attention BiGRU fatigue detection model based on ECG signal[J].Chinese Journal of Medical Physics,2022,39(5):578-584.[doi:DOI:10.3969/j.issn.1005-202X.2022.05.010]
点击复制

基于心电信号的自注意力双向门控循环网络疲劳检测模型()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
39卷
期数:
2022年第5期
页码:
578-584
栏目:
医学信号处理与医学仪器
出版日期:
2022-05-27

文章信息/Info

Title:
Self-attention BiGRU fatigue detection model based on ECG signal
文章编号:
1005-202X(2022)05-0578-07
作者:
刘婕王娆芬邓源
上海工程技术大学电子电气工程学院, 上海 201620
Author(s):
LIU Jie WANG Raofen DENG Yuan
School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
关键词:
心电信号双向门控循环网络自注意力机制疲劳分类
Keywords:
Keywords: electrocardiogram signal bidirectional gated recurrent network self-attention mechanism fatigue classification
分类号:
R318;TP391
DOI:
DOI:10.3969/j.issn.1005-202X.2022.05.010
文献标志码:
A
摘要:
人类操作员的生理疲劳状态对其作业效率与安全性存在很大的影响,本研究提出了一种基于自注意力(SA)机制的双向门控循环(BiGRU)网络疲劳检测模型,研究基于心电信号的疲劳检测方法。首先采集了模拟不同负荷水平的过程控制任务环境下操作人员的心电数据,以一维心电数据作为输入,经过去噪预处理后,使用改进的BiGRU神经网络进行特征提取,BiGRU在保留GRU优点的同时可以更加充分学习心电信号前后时序的特征联系,并通过SA机制筛选显著相关特征信息,最后将所获得的特征信息经过softmax分类器,得到疲劳分类结果。与传统的GRU模型和BiLSTM模型进行了比较,经过改进后的SA-BiGRU模型的疲劳分类性能整体提高2%~5%,总体准确率达83%。
Abstract:
The physiological fatigue state of human operators has great effects on their working efficiency and safety. A BiGRU fatigue detection model based on self-attention (SA) mechanism is proposed to study the fatigue detection method based on electrocardiogram (ECG) signal. The ECG data of the operators in the process control task environment simulating different load levels are collected, and the one-dimensional ECG data are taken as input. After denoising and preprocessing, the improved bidirectional GRU neural network (BiGRU) which can more fully learn the feature connection of the timing before and after ECG signals while retaining GRU advantages is used for feature extraction, and SA mechanism is used for screening out significant related feature information. Finally, the obtained feature information is passed through the softmax classifier to obtain the fatigue classification results. The fatigue classification performance of the improved SA-BiGRU model is improved by 2% to 5% as compared with the traditional GRU model and BiLSTM model, and the overall accuracy of the improved SA-BiGRU model reaches 83%.

相似文献/References:

[1]杨杰,张胜,余顺,等.一种基于二次样条母小波函数的心电QRS复合波检测算法[J].中国医学物理学杂志,2013,30(02):4036.[doi:10.3969/j.issn.1005-202X.2013.02.018]
[2]余顺,张胜,杨杰,等.静息状态下不同姿势心电的RR间隔研究[J].中国医学物理学杂志,2013,30(04):4285.[doi:10.3969/j.issn.1005-202X.2013.04.016]
[3]刘雄飞,周惠勇.基于提升小波变换和多种策略的QRS波检测算法[J].中国医学物理学杂志,2013,30(06):4557.[doi:10.3969/j.issn.1005-202X.2013.06.021]
[4]黄碧莹,唐桦明,钟能枝,等.基于多模板匹配的室性心动过速与室上性心动过速自动识别算法[J].中国医学物理学杂志,2016,33(3):280.[doi:DOI:10.3969/j.issn.1005-202X.2016.03.012]
 [J].Chinese Journal of Medical Physics,2016,33(5):280.[doi:DOI:10.3969/j.issn.1005-202X.2016.03.012]
[5]袁野,王夏天,张子辰,等.基于小波变换和改进的瞬态独立成分分析融合算法的心电信号降噪方法[J].中国医学物理学杂志,2016,33(4):415.[doi:10.3969/j.issn.1005-202X.2016.04.019]
 [J].Chinese Journal of Medical Physics,2016,33(5):415.[doi:10.3969/j.issn.1005-202X.2016.04.019]
[6]李朝兰,方滨,李慧杰,等.应用自相关和独立分量分析的胎儿心电信号提取[J].中国医学物理学杂志,2016,33(8):838.[doi:10.3969/j.issn.1005-202X.2016.08.017]
 [J].Chinese Journal of Medical Physics,2016,33(5):838.[doi:10.3969/j.issn.1005-202X.2016.08.017]
[7]吴敏,谢云,邬洋. 便携式心电监测系统的硬件设计与实现[J].中国医学物理学杂志,2018,35(2):210.[doi:DOI:10.3969/j.issn.1005-202X.2018.02.018]
 WU Min,XIE Yun,WU Yang. Hardware design and implementation of portable electrocardiogram monitoring system[J].Chinese Journal of Medical Physics,2018,35(5):210.[doi:DOI:10.3969/j.issn.1005-202X.2018.02.018]
[8]吴义满.一种基于经验小波变换的心电信号室性早搏检测算法[J].中国医学物理学杂志,2018,35(9):1063.[doi:DOI:10.3969/j.issn.1005-202X.2018.09.013]
 WU Yiman.Detecting premature ventricular contractions in ECG signals with empirical wavelet transformbased algorithm[J].Chinese Journal of Medical Physics,2018,35(5):1063.[doi:DOI:10.3969/j.issn.1005-202X.2018.09.013]
[9]曾俊,吕红艳,李承红,等. 基于Android手机的生理参数移动监测系统[J].中国医学物理学杂志,2018,35(10):1187.[doi:DOI:10.3969/j.issn.1005-202X.2018.10.015]
 ZENG Jun,LÜ,Hongyan,et al. Physiology parameter monitoring system based on Android mobile phone[J].Chinese Journal of Medical Physics,2018,35(5):1187.[doi:DOI:10.3969/j.issn.1005-202X.2018.10.015]
[10]蒋莲,陈兆学. 基于心电信号提取呼吸信号的算法研究[J].中国医学物理学杂志,2019,36(4):462.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.018]
 JIANG Lian,CHEN Zhaoxue. Algorithm for extracting respiratory signals based on electrocardiogram signals[J].Chinese Journal of Medical Physics,2019,36(5):462.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.018]

备注/Memo

备注/Memo:
【收稿日期】2021-11-15 【基金项目】国家自然科学基金(61803255,71701124);上海市自然科学基金(18ZR1416700) 【作者简介】刘婕,硕士研究生,研究方向:智能计算与信息处理,E-mail: 979438557@qq.com 【通信作者】王娆芬,博士,副教授,研究方向:智能建模、生理信号分析及疲劳识别等,E-mail: rfwangsues@163.com
更新日期/Last Update: 2022-05-27