[1]孙国栋,石蕴玉,刘翔,等.超声图像血管分割的研究进展[J].中国医学物理学杂志,2022,39(4):453-458.[doi:DOI:10.3969/j.issn.1005-202X.2022.04.011]
 SUN Guodong,SHI Yunyu,LIU Xiang,et al.Advances in blood vessel segmentation in ultrasound image[J].Chinese Journal of Medical Physics,2022,39(4):453-458.[doi:DOI:10.3969/j.issn.1005-202X.2022.04.011]
点击复制

超声图像血管分割的研究进展()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
39卷
期数:
2022年第4期
页码:
453-458
栏目:
医学影像物理
出版日期:
2022-04-27

文章信息/Info

Title:
Advances in blood vessel segmentation in ultrasound image
文章编号:
1005-202X(2022)04-0453-06
作者:
孙国栋1石蕴玉1刘翔1宋家琳2赵静文1浦秀丽1尹玲1
1.上海工程技术大学电子电气工程学院, 上海 201620; 2.第二军医大学附属长征医院超声科, 上海 200003
Author(s):
SUN Guodong1 SHI Yunyu1 LIU Xiang1 SONG Jialin2 ZHAO Jingwen1 PU Xiuli1 YIN Ling1
1. School of Electrical and Electronic Engineering, Shanghai University of Engineering Science, Shanghai 201620, China 2. Department of Ultrasound, Changzheng Hospital Affiliated to the Second Military Medical University, Shanghai 200003, China
关键词:
超声图像特征提取机器学习血管分割综述
Keywords:
Keywords: ultrasound image feature extraction machine learning vessel segmentation review
分类号:
R318
DOI:
DOI:10.3969/j.issn.1005-202X.2022.04.011
文献标志码:
A
摘要:
主要阐述超声图像血管分割算法及其评价指标。基于特征提取的经典图像处理算法不能摆脱对人工的依赖,削弱了分割算法的泛化能力;但对于缺乏大样本超声血管图像的研究场景下,充分利用传统且成熟的技术方法却是一种可行的研究办法。基于机器学习的算法提高了分割算法的泛化能力,改善了传统方法的短板;但深度学习技术对数据的依赖性强、可解释性差,其算法的有效性、稳定性还需深入研究。血管分割评价算法的研究极其重要,研究适合超声图像血管分割的客观评价方法也是重要课题之一。总之,传统方法仍然是解决超声图像血管分割的有效方法,传统方法与深度学习技术的紧密结合是未来的发展趋势。
Abstract:
Abstract: The blood vessel segmentation algorithm for ultrasound image and its evaluation indexes are mainly reviewed. Although the classical image processing algorithms based on feature extraction cant get rid of the reliance on manual labor, it is a feasible research approach to make full use of the traditional and mature technical methods in the research scenario where there is a lack of large samples of ultrasound blood vessel images. The algorithms based on machine learning improve the generalization ability of segmentation algorithm and overcome the shortcomings of the traditional methods. However, deep learning techniques have strong dependence on data and poor interpretability, and their effectiveness and stability need to be further studied. The study on blood vessel segmentation evaluation algorithms is critical, and finding the objective evaluation methods suitable for segmentation of blood vessels in ultrasound images is one of the important topics. In conclusion, the traditional method is still an effective method to complete the blood vessel segmentation in ultrasound images, and the combination of the traditional method and deep learning techniques is the future development trend.

相似文献/References:

[1]李金泽,李 华,喻 罡,等.基于大脑形态学和SVM的孤独症自动识别[J].中国医学物理学杂志,2014,31(06):5338.[doi:10.3969/j.issn.1005-202X.2014.06.026]
[2]席玉胜,曾伟杰,郭亚平,等.基于小波分解的颈动脉波特征提取算法[J].中国医学物理学杂志,2013,30(03):4174.[doi:10.3969/j.issn.1005-202X.2013.03.020]
[3]张绿川,杨艳.基于稀疏表示超像素分类的肿瘤超声图像分割算法[J].中国医学物理学杂志,2015,32(06):855.[doi:doi:10.3969/j.issn.1005-202X.2015.06.020]
 [J].Chinese Journal of Medical Physics,2015,32(4):855.[doi:doi:10.3969/j.issn.1005-202X.2015.06.020]
[4]刘一学,李锵,关欣,等.基于支持向量机的颈动脉超声图像内中膜厚度测量[J].中国医学物理学杂志,2016,33(5):451.[doi:10.3969/j.issn.1005-202X.2016.05.005]
 [J].Chinese Journal of Medical Physics,2016,33(4):451.[doi:10.3969/j.issn.1005-202X.2016.05.005]
[5]吴金风,张东. 高强度聚焦超声图像斑点解相关特性分析[J].中国医学物理学杂志,2017,34(6):590.[doi:DOI:10.3969/j.issn.1005-202X.2017.06.010]
 [J].Chinese Journal of Medical Physics,2017,34(4):590.[doi:DOI:10.3969/j.issn.1005-202X.2017.06.010]
[6]马晶,蔡文杰,杨利. 心音信号分析[J].中国医学物理学杂志,2017,34(11):1172.[doi:DOI:10.3969/j.issn.1005-202X.2017.11.017]
 MA Jing,CAI Wenjie,YANG Li. Heart sound analysis[J].Chinese Journal of Medical Physics,2017,34(4):1172.[doi:DOI:10.3969/j.issn.1005-202X.2017.11.017]
[7]苏志刚,朱海玲,郝敬堂. 基于高斯混合模型的脉搏波特征提取方法[J].中国医学物理学杂志,2018,35(1):76.[doi:DOI:10.3969/j.issn.1005-202X.2018.01.014]
 SU Zhigang,ZHU Hailing,HAO Jingtang. Gaussian mixture model-based method for extracting the features of pulse wave[J].Chinese Journal of Medical Physics,2018,35(4):76.[doi:DOI:10.3969/j.issn.1005-202X.2018.01.014]
[8]崔星星,苏智剑. 一种新呼吸音信号特征提取方法与应用[J].中国医学物理学杂志,2018,35(2):214.[doi:DOI:10.3969/j.issn.1005-202X.2018.02.019]
 CUI Xingxing,SU Zhijian. A new feature extraction method of respiration signal and its application[J].Chinese Journal of Medical Physics,2018,35(4):214.[doi:DOI:10.3969/j.issn.1005-202X.2018.02.019]
[9]周文,王瑜,肖红兵,等. 基于KPCA算法的阿尔茨海默症辅助诊断[J].中国医学物理学杂志,2018,35(4):404.[doi:DOI:10.3969/j.issn.1005-202X.2018.04.007]
 ZHOU Wen,WANG Yu,XIAO Hongbing,et al. Assisted diagnosis of Alzheimer’s disease based on KPCA algorithm[J].Chinese Journal of Medical Physics,2018,35(4):404.[doi:DOI:10.3969/j.issn.1005-202X.2018.04.007]
[10]张娜,王瑜,周文,等. 正则化多任务学习在精神分裂症核磁共振成像图像分类中的应用[J].中国医学物理学杂志,2018,35(7):790.[doi:DOI:10.3969/j.issn.1005-202X.2018.07.010]
 ZHANG Na,WANG Yu,ZHOU Wen,et al. Application of regularized multi-task learning in schizophrenia MRI data classification[J].Chinese Journal of Medical Physics,2018,35(4):790.[doi:DOI:10.3969/j.issn.1005-202X.2018.07.010]

备注/Memo

备注/Memo:
【收稿日期】2021-09-17 【基金项目】国家自然科学基金青年基金(61802251);上海市自然科学基金(19ZR1421500) 【作者简介】孙国栋,硕士研究生,研究方向:医学图像处理,E-mail: guodongsun@sues.edu.cn 【通信作者】石蕴玉,博士,讲师,研究方向:计算机视觉与模式识别,E-mail: yunyushi@sues.edu.cn
更新日期/Last Update: 2022-04-27