相似文献/References:
[1]王怡玲,覃玉荣,郭湛超,等.基于不同闪烁频率光刺激的脑电压变化研究[J].中国医学物理学杂志,2014,31(05):5184.[doi:10.3969/j.issn.1005-202X.2014.05.019]
[2]董亮,张兴安,熊冬生,等.基于TCI麻醉深度智能控制系统的设计[J].中国医学物理学杂志,2013,30(02):4052.[doi:10.3969/j.issn.1005-202X.2013.02.021]
[3]杨建平,张德乾,吕敬祥,等.操作发起过程多脑区协作的脑电谱熵特征[J].中国医学物理学杂志,2016,33(1):44.[doi:DOI:10.3969/j.issn.1005-202X.2016.01.010]
[J].Chinese Journal of Medical Physics,2016,33(8):44.[doi:DOI:10.3969/j.issn.1005-202X.2016.01.010]
[4]崔招焕,等.大鼠癫痫脑电信号采集[J].中国医学物理学杂志,2016,33(2):118.[doi:10.3969/j.issn.1005-202X.2016.02.003]
[J].Chinese Journal of Medical Physics,2016,33(8):118.[doi:10.3969/j.issn.1005-202X.2016.02.003]
[5]刘岩,李幼军,陈萌. 基于固有模态分解和深度学习的抑郁症脑电信号分类分析[J].中国医学物理学杂志,2017,34(9):963.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.021]
[J].Chinese Journal of Medical Physics,2017,34(8):963.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.021]
[6]丁正敏,熊冬生,陈宇珂,等. 基于脑电样本熵和小波熵的麻醉深度监测[J].中国医学物理学杂志,2018,35(2):243.[doi:DOI:10.3969/j.issn.1005-202X.2018.02.024]
DING Zhengmin,XIONG Dongsheng,CHEN Yuke,et al. Sample entropy and wavelet entropy of electroencephalogram for monitoring the depth of anesthesia[J].Chinese Journal of Medical Physics,2018,35(8):243.[doi:DOI:10.3969/j.issn.1005-202X.2018.02.024]
[7]马玉良,刘卫星,张淞杰,等.基于ABC-SVM的运动想象脑电信号模式分类[J].中国医学物理学杂志,2018,35(9):1056.[doi:10.3969/j.issn.1005-202X.2018.09.012]
MAYuliang,LIUWeixing,ZHANG Songjie,et al.Pattern classification of motor imagery EEG signals based on ABC-SVM algorithm[J].Chinese Journal of Medical Physics,2018,35(8):1056.[doi:10.3969/j.issn.1005-202X.2018.09.012]
[8]刘畅,覃玉荣,时文健.视听觉刺激下大脑头皮电位空间变化特性[J].中国医学物理学杂志,2018,35(10):1225.[doi:DOI:10.3969/j.issn.1005-202X.2018.010.023]
LIU Chang,QIN Yurong,SHI Wenjian. Spatial variation characteristics of scalp potentials under audiovisual stimuli[J].Chinese Journal of Medical Physics,2018,35(8):1225.[doi:DOI:10.3969/j.issn.1005-202X.2018.010.023]
[9]周杰,杨国雨,徐涛. 基于空间频率与时间序列信息的多类运动想象脑电分类[J].中国医学物理学杂志,2019,36(1):81.[doi:DOI:10.3969/j.issn.1005-202X.2019.01.016]
ZHOU Jie,YANG Guoyu,XU Tao. Classification of multi-class motor imagery EEG data based on spatial frequency and time-series information[J].Chinese Journal of Medical Physics,2019,36(8):81.[doi:DOI:10.3969/j.issn.1005-202X.2019.01.016]
[10]苏克阳,曾景阳,谢文钦,等. 近似熵在脑电监测麻醉深度中的应用[J].中国医学物理学杂志,2019,36(1):117.[doi:DOI:10.3969/j.issn.1005-202X.2019.01.023]
SU Keyang,ZENG Jingyang,XIE Wenqin,et al. Application of EEG approximate entropy in monitoring the depth of anesthesia[J].Chinese Journal of Medical Physics,2019,36(8):117.[doi:DOI:10.3969/j.issn.1005-202X.2019.01.023]
[11]顾家军,叶继伦.麻醉深度监测中脑电信号特征提取方法[J].中国医学物理学杂志,2016,33(2):157.[doi:10.3969/j.issn.1005-202X.2016.02.010]
[J].Chinese Journal of Medical Physics,2016,33(8):157.[doi:10.3969/j.issn.1005-202X.2016.02.010]
[12]余陈佑,程云章.基于多域脑电参数分析的麻醉深度评估[J].中国医学物理学杂志,2022,39(7):907.[doi:DOI:10.3969/j.issn.1005-202X.2022.07.020]
YU Chenyou,CHENG Yunzhang.Estimating depth of anesthesia based on analysis of multi-domain EEG parameters[J].Chinese Journal of Medical Physics,2022,39(8):907.[doi:DOI:10.3969/j.issn.1005-202X.2022.07.020]
[13]汤卫雄,程云章,张天逸,等.基于脑电非线性特征和AdaBoost算法的诱导期麻醉深度检测[J].中国医学物理学杂志,2023,40(5):616.[doi:DOI:10.3969/j.issn.1005-202X.2023.05.015]
TANG Weixiong,CHENG Yunzhang,et al.Monitoring depth of anesthesia during induction using EEG nonlinear characteristics combined with AdaBoost algorithm[J].Chinese Journal of Medical Physics,2023,40(8):616.[doi:DOI:10.3969/j.issn.1005-202X.2023.05.015]