[1]陈静,于勇,段海峰,等.基于定量CT对新型冠状病毒肺炎肺部改变的纵向研究[J].中国医学物理学杂志,2020,37(4):445-449.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.009]
 CHEN Jing,YU Yong,DUAN Haifeng,et al.Longitudinal study of lung changes induced by COVID-19 based on quantitative CT[J].Chinese Journal of Medical Physics,2020,37(4):445-449.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.009]
点击复制

基于定量CT对新型冠状病毒肺炎肺部改变的纵向研究()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
37
期数:
2020年第4期
页码:
445-449
栏目:
医学影像物理
出版日期:
2020-04-29

文章信息/Info

Title:
Longitudinal study of lung changes induced by COVID-19 based on quantitative CT
文章编号:
1005-202X(2020)04-0445-05
作者:
陈静1于勇1段海峰1金晨望2沈聪2于楠1
1.陕西中医药大学附属医院医学影像科, 陕西 咸阳 712000; 2.西安交通大学第一附属医院医学影像科, 陕西 西安 710061
Author(s):
CHEN Jing1 YU Yong1 DUAN Haifeng1 JIN Chenwang2 SHEN Cong2 YU Nan1
1.Department of Radiology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, China; 2. Department of Radiology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
关键词:
新型冠状病毒肺炎定量CT磨玻璃密度
Keywords:
Keywords: novel corona virus pneumonia quantitative CT ground glass opacity
分类号:
R814.42;R563.1
DOI:
DOI:10.3969/j.issn.1005-202X.2020.04.009
文献标志码:
A
摘要:
目的:探讨新型冠状病毒感染引起肺部改变的CT定量参数变化,为新型冠状病毒肺炎患者提供影像定量依据。方法:回顾性分析已确诊新型冠状病毒感染者17例,对其初次及随访胸部CT图像进行定量分析。CT定量评价指标包括肺总体积(TV)、病变总体积(TLV)、病变占总肺体积百分比(TLV/TL%)、最高密度区(HLD)、最低密度区(LLD)、磨玻璃密度百分比(GGO%)。结果:17例确诊患者共进行42次胸部CT扫描,平均间隔时间为(4±1) d。按照发病时间将病程分为4个阶段:第1阶段第0~3天,第2阶段第4~7天,第3阶段第8~14天和第4阶段第15~21天。其中第2阶段(第4~7天)和第3阶段(第8~14天)的患者TLV和TLV/TL%最高,而TV和GGO%最低(P=0.001)。TLV/TL%在第4~7天进展最快。快速进展患者(2次随访CT发现TLV进展超过50%)具有高龄(P<0.05)、淋巴细胞计数降低(P<0.001),首次CT扫描GGO%更低而TLV/TL%较高(P<0.05)的特点。结论:胸部定量CT相关指标提示,病变在第4~7天进展最快;高龄、淋巴细胞减低,初检时胸部CT病灶范围大且密度高的患者更容易出现病变的快速进展。 【关键词】新型冠状病毒;肺炎;定量CT;磨玻璃密度
Abstract:
Abstract: Objective To investigate the changes in CT quantitative parameters because of the lung changes induced by 2019 novel coronavirus (COVID-19) for providing quantitative imaging basis for patients with COVID-19. Methods A retrospective analysis of 17 patients with confirmed COVID-19 was carried out. The initial and follow-up chest CT images were analyzed quantitatively. The quantitative CT indexes included total lung volume (TV), total lesion volume (TLV), the percentage of lesion volume in total lung volume (TLV/T%), the highest lesion density region (HLD), the lowest lesion density region (LLD), percentage of ground glass opacity (GGO%). Results A total of 42 chest CT scans were conducted in 17 patients with confirmed COVID-19, and the average interval was (4±1) days. According to the time of onset, the course of disease was divided into 4 stages, namely day 0-3 (stage 1), day 4-7 (stage 2), day 8-14 (stage 3) and day 15-21 (stage 4). TLV and TLV/TL% reached the highest in stage 2 (day 4-7) and stage 3 (day 8-14), while TV and GGO% were the lowest (P=0.001). The fastest progression of TLV/TL% was found in stage 2 (day 4-7). Patients with rapid disease progression (with more than 50% TLV progression in 2 follow-up CT scans) had the characteristics of elder age (P<0.05), decreased lymphocyte count (P<0.001), and lower GGO% but higher TLV/TL% in the first CT scan (P<0.05). Conclusion Chest quantitative CT related indicators suggest that the fastest disease progression is on day 4-7. The patients with elder age, low leukocyte count, large lesion volume and high lesion density in initial CT are more likely to have rapid disease progression.

相似文献/References:

[1]申严,杨普查,卓宋明.床旁超声联合支气管镜在被动卧床肺炎患者住院管理评估指标中的价值[J].中国医学物理学杂志,2019,36(8):933.[doi:DOI:10.3969/j.issn.1005-202X.2019.08.014]
 SHEN Yan,YANG Pucha,ZHUO Songming.Value of bedside ultrasound combined with bronchoscopy in the index evaluation of inpatient management for bedridden patients with pneumonia[J].Chinese Journal of Medical Physics,2019,36(4):933.[doi:DOI:10.3969/j.issn.1005-202X.2019.08.014]
[2]刘发明,江桂华,杨宁,等.新型冠状病毒肺炎的影像组学研究[J].中国医学物理学杂志,2020,37(4):463.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.012]
 LIU Faming,JIANG Guihua,YANG Ning,et al.Radiomics analysis on COVID-19[J].Chinese Journal of Medical Physics,2020,37(4):463.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.012]
[3]董芳芬,陈群,李诺兮,等.基于深度学习的儿童肺炎检测模型建立及应用[J].中国医学物理学杂志,2022,39(12):1579.[doi:DOI:10.3969/j.issn.1005-202X.2022.12.020]
 DONG Fangfen,CHEN Qun,et al.Establishment and application of a deep learning-based model for pneumonia detection in children[J].Chinese Journal of Medical Physics,2022,39(4):1579.[doi:DOI:10.3969/j.issn.1005-202X.2022.12.020]
[4]王芳平,王志坚,孙咏萍,等.SARS-CoV-2与SARS病毒基因组中密码子使用的比较[J].中国医学物理学杂志,2023,40(11):1402.[doi:DOI:10.3969/j.issn.1005-202X.2023.11.014]
 WANG Fangping,WANG Zhijian,SUN Yongping,et al.Comparative analysis of codon usage in the genomes of SARS-CoV-2 and SARS virus[J].Chinese Journal of Medical Physics,2023,40(4):1402.[doi:DOI:10.3969/j.issn.1005-202X.2023.11.014]
[5]邓靓娜,薛彩强,林晓强,等.新型冠状病毒肺炎的影像学应用及进展[J].中国医学物理学杂志,2020,37(6):726.[doi:DOI:10.3969/j.issn.1005-202X.2020.06.013]
 DENG Liangna,,et al.Application progress of imaging in COVID-19[J].Chinese Journal of Medical Physics,2020,37(4):726.[doi:DOI:10.3969/j.issn.1005-202X.2020.06.013]
[6]韩冬,于勇,贺太平,等.基于密度分布特征及机器学习诊断COVID-19相关性肺炎[J].中国医学物理学杂志,2021,38(3):387.[doi:DOI:10.3969/j.issn.1005-202X.2021.03.022]
 HAN Dong,YU Yong,HE Taiping,et al.Diagnosis of COVID-19 associated pneumonia based on density distribution features and machine learning[J].Chinese Journal of Medical Physics,2021,38(4):387.[doi:DOI:10.3969/j.issn.1005-202X.2021.03.022]

备注/Memo

备注/Memo:
【收稿日期】2020-04-02 【基金项目】国家自然科学基金(81701691);陕西中医药大学创新团队(2019-QN09) 【作者简介】陈静,主治医师,研究方向:中枢神经系统功能磁共振影像,E-mail: 345717558@qq.com 【通讯作者】于楠,副教授,研究方向:胸部影像学,E-mail: yunan0512 @sina.com
更新日期/Last Update: 2020-04-29