[1]包其扬,王军霞,岳小力.基于子带频谱墒算法检测表面肌电信号肌肉疲劳性[J].中国医学物理学杂志,2020,37(10):1302-1305.[doi:DOI:10.3969/j.issn.1005-202X.2020.10.015]
 BAO Qiyang,WANG Junxia,YUE Xiaoli.Detection of muscle fatigue based on surface electromyography signals segmented by subband spectral entropy algorithm[J].Chinese Journal of Medical Physics,2020,37(10):1302-1305.[doi:DOI:10.3969/j.issn.1005-202X.2020.10.015]
点击复制

基于子带频谱墒算法检测表面肌电信号肌肉疲劳性()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
37
期数:
2020年第10期
页码:
1302-1305
栏目:
医学信号处理与医学仪器
出版日期:
2020-10-29

文章信息/Info

Title:
Detection of muscle fatigue based on surface electromyography signals segmented by subband spectral entropy algorithm
文章编号:
1005-202X(2020)10-1302-04
作者:
包其扬王军霞岳小力
中国人民解放军联勤保障部队第九四〇医院, 甘肃 兰州 730050
Author(s):
BAO Qiyang WANG Junxia YUE Xiaoli
No. 940 Hospital of the Joint Logistics Support Force of PLA, Lanzhou 730050, China
关键词:
子带频谱墒谱熵值表面肌电信号肌肉疲劳双阈值收缩区平均功率频率灵敏度波动比
Keywords:
Keywords: subband spectral entropy surface electromyography signal muscle fatigue double-threshold contraction region mean power frequency sensitivity to variability ratio
分类号:
R318
DOI:
DOI:10.3969/j.issn.1005-202X.2020.10.015
文献标志码:
A
摘要:
目的:针对传统检测肌肉疲劳方法灵敏度较差问题,提出按肌肉收缩区分割表面肌电信号。该方法考虑到肌肉动态收缩时肌肉发力、形状等因素影响特征参数平均功率频率的表征效果,因此,在分割表面肌电信号上以肌肉收缩区的个数作为单位,摒弃以时间作为单位的传统分割。方法:采用单参数结合双阈值的方法判断肌肉收缩区起、止点。利用肌肉动态收缩区特征参数平均功率频率的灵敏度波动比表征肌肉疲劳的灵敏度。表面肌电信号采集设备品牌为NORAXON、型号为MR3.6版本,程序设计采用MATLAB编程。结果与结论:仿真结果证明与传统定长分割方法相比,该方法检测肌肉疲劳具有较高的灵敏度和较好的表征性。
Abstract:
Abstract: Objective In view of the poor sensitivity of traditional methods for muscle fatigue detection, a new method is proposed to segment surface electromyography (sEMG) signals according to muscle contraction regions. Considering that the power and shape of muscle will affect the representation of the mean power frequency of the characteristic parameters when the muscle is in dynamic contraction, the number of muscle contraction regions instead of time is taken as the unit in sEMG signal segmentation. Methods The combining single-parameter and double-threshold is used to determine the starting and ending points of muscle contraction regions. The sensitivity of muscle fatigue is characterized by the sensitivity to variability ratio of the mean power frequency of the characteristic parameters of the dynamic contraction regions of muscle. The brand of sEMG acquisition equipment is NORAXON, and the model is MR3.6. MATLAB is used for programming. Results and Conclusion The simulation results show that compared with traditional fixed-length segmentation, the proposed method has a higher sensitivity and a better characterization in muscle fatigue detection.

相似文献/References:

[1]吴志敏,杜佳乐,乔晓艳.经穴位电刺激下的表面肌电信号特征分析[J].中国医学物理学杂志,2015,32(01):77.[doi:10.3969/j.issn.1005-202X.2015.01.019]
[2]陈文敏,肖玲玲,李慧慧,等. 单侧痛腰椎间盘突出症的表面肌电信号特征[J].中国医学物理学杂志,2017,34(10):1022.[doi:DOI:10.3969/j.issn.1005-202X.2017.10.011]
 [J].Chinese Journal of Medical Physics,2017,34(10):1022.[doi:DOI:10.3969/j.issn.1005-202X.2017.10.011]
[3]雷建超,刘栋博,房玉,等.基于表面肌电信号的性别差异性手势识别[J].中国医学物理学杂志,2020,37(3):337.[doi:DOI:10.3969/j.issn.1005-202X.2020.03.016]
 LEI Jianchao,LIU Dongbo,FANG Yu,et al.Recognition of hand gestures with gender differences based on surface electromyographic signals[J].Chinese Journal of Medical Physics,2020,37(10):337.[doi:DOI:10.3969/j.issn.1005-202X.2020.03.016]
[4]刘若汐,饶家声,魏瑞晗,等.恒河猴表面肌电信号小波去噪的复合评价指标[J].中国医学物理学杂志,2020,37(9):1169.[doi:10.3969/j.issn.1005-202X.2020.09.017]
 LIU Ruoxi,RAO Jiasheng,WEI Ruihan,et al.A composite evaluation indicator of wavelet denoising in surface electromyography of rhesusmonkey[J].Chinese Journal of Medical Physics,2020,37(10):1169.[doi:10.3969/j.issn.1005-202X.2020.09.017]
[5]冯凯,董秀成,刘栋博.基于经验模态分解-小波包变换的表面肌电信号手势识别[J].中国医学物理学杂志,2021,38(4):461.[doi:DOI:10.3969/j.issn.1005-202X.2021.04.013]
 FENG Kai,DONG Xiucheng,LIU Dongbo.Empirical mode decomposition and wavelet packet transform applied to surface EMG signal for hand gesture recognition[J].Chinese Journal of Medical Physics,2021,38(10):461.[doi:DOI:10.3969/j.issn.1005-202X.2021.04.013]
[6]周明娟,王语园,王田戈,等.针对微弱表面肌电信号的采集电路设计[J].中国医学物理学杂志,2021,38(5):625.[doi:DOI:10.3969/j.issn.1005-202X.2021.05.019]
 ZHOU Mingjuan,WANG Yuyuan,WANG Tiange,et al.Design of acquisition circuit for weak surface electromyography signals[J].Chinese Journal of Medical Physics,2021,38(10):625.[doi:DOI:10.3969/j.issn.1005-202X.2021.05.019]
[7]张夏丰,阚秀,曹乐,等.基于肌电信号与肌肉形变信号的手语识别[J].中国医学物理学杂志,2021,38(11):1392.[doi:DOI:10.3969/j.issn.1005-202X.2021.11.014]
 ZHANG Xiafeng,KAN Xiu,CAO Le,et al.Sign language recognition based on electromyogram signal and muscle deformation signal[J].Chinese Journal of Medical Physics,2021,38(10):1392.[doi:DOI:10.3969/j.issn.1005-202X.2021.11.014]
[8]张建华,王豪,李克祥,等.基于KPCA的膝关节多模式连续运动估计[J].中国医学物理学杂志,2023,40(6):742.[doi:DOI:10.3969/j.issn.1005-202X.2023.06.012]
 ZHANG Jianhua,WANG Hao,LI Kexiang,et al.KPCA-based continuous motion estimation of knee joint in multiple motion modes[J].Chinese Journal of Medical Physics,2023,40(10):742.[doi:DOI:10.3969/j.issn.1005-202X.2023.06.012]
[9]张思河,曹乐,王金玮,等.基于表面肌电信号的BiLSTM-SA双臂肌力估计[J].中国医学物理学杂志,2023,40(11):1383.[doi:DOI:10.3969/j.issn.1005-202X.2023.11.011]
 ZHANG Sihe,CAO Le,WANG Jinwei,et al.BiLSTM-SA model for muscle strength estimation from sEMG[J].Chinese Journal of Medical Physics,2023,40(10):1383.[doi:DOI:10.3969/j.issn.1005-202X.2023.11.011]

备注/Memo

备注/Memo:
【收稿日期】2020-02-19 【基金项目】兰州军区医药卫生科研课题(CLZ14JA05) 【作者简介】包其扬,助理工程师,研究方向:医疗设备维修、管理及临床应用,E-mail: 13909402983@163.com 【通信作者】王军霞,E-mail: 1473723812@qq.com
更新日期/Last Update: 2020-10-29