[1]雷建超,刘栋博,房玉,等.基于表面肌电信号的性别差异性手势识别[J].中国医学物理学杂志,2020,37(3):337-341.[doi:DOI:10.3969/j.issn.1005-202X.2020.03.016]
 LEI Jianchao,LIU Dongbo,FANG Yu,et al.Recognition of hand gestures with gender differences based on surface electromyographic signals[J].Chinese Journal of Medical Physics,2020,37(3):337-341.[doi:DOI:10.3969/j.issn.1005-202X.2020.03.016]
点击复制

基于表面肌电信号的性别差异性手势识别()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
37
期数:
2020年第3期
页码:
337-341
栏目:
医学信号处理与医学仪器
出版日期:
2020-03-25

文章信息/Info

Title:
Recognition of hand gestures with gender differences based on surface electromyographic signals
文章编号:
1005-202X(2020)03-0337-05
作者:
雷建超刘栋博房玉庄祖江刘俊豪
西华大学电气与电子信息学院, 四川 成都 611730
Author(s):
LEI Jianchao LIU Dongbo FANG Yu ZHUANG Zujiang LIU Junhao
School of Electrical Engineering and Electronic Information, Xihua University, Chengdu 611730, China
关键词:
手势表面肌电信号能量补偿小波包分解
Keywords:
Keywords: hand gesture surface electromyographic signal energy compensation wavelet packet decomposition
分类号:
R318;TP391.4
DOI:
DOI:10.3969/j.issn.1005-202X.2020.03.016
文献标志码:
A
摘要:
对于同一手势不同性别的表面肌电信号差异性较大。为了减小差异性,提出滑动平均能量与能量补偿相结合的方法。本实验共采集10种手势动作的表面肌电信号;利用滑动平均能量对活动段进行检测,并对女性的动作段进行能量补偿;小波包分解采用Db4、Bior3.2、Haar、Sys8、Dmey这5种小波函数提取特征;最后并通过粒子群优化支持向量机进行分类。结果分析表明,能量补偿增大了特征的辨识度,减小了性别差异性,提高了手势识别率。
Abstract:
Abstract: For the same gestures, there are some gender differences in surface electromyographic signals (sEMG). Herein a method combining sliding average energy and energy compensation is proposed to reduce the gender differences for the recognition of hand gestures. The sEMG of 10 hand gestures are collected. The active segment is detected by sliding average energy, and then the energy of female motion segment is compensated. Five wavelet functions of wavelet packet decomposition, namely Db4, Bior3.2, Haar, Sys8 and Dmey, were used to extract features. Finally, the obtained data are classified and recognized by particle swarm optimization-support vector machine. The results show that energy compensation improves the identification of features, reduces gender differences, and increases the recognition rate of hand gestures.

相似文献/References:

[1]吴志敏,杜佳乐,乔晓艳.经穴位电刺激下的表面肌电信号特征分析[J].中国医学物理学杂志,2015,32(01):77.[doi:10.3969/j.issn.1005-202X.2015.01.019]
[2]陈文敏,肖玲玲,李慧慧,等. 单侧痛腰椎间盘突出症的表面肌电信号特征[J].中国医学物理学杂志,2017,34(10):1022.[doi:DOI:10.3969/j.issn.1005-202X.2017.10.011]
 [J].Chinese Journal of Medical Physics,2017,34(3):1022.[doi:DOI:10.3969/j.issn.1005-202X.2017.10.011]
[3]刘若汐,饶家声,魏瑞晗,等.恒河猴表面肌电信号小波去噪的复合评价指标[J].中国医学物理学杂志,2020,37(9):1169.[doi:10.3969/j.issn.1005-202X.2020.09.017]
 LIU Ruoxi,RAO Jiasheng,WEI Ruihan,et al.A composite evaluation indicator of wavelet denoising in surface electromyography of rhesusmonkey[J].Chinese Journal of Medical Physics,2020,37(3):1169.[doi:10.3969/j.issn.1005-202X.2020.09.017]
[4]包其扬,王军霞,岳小力.基于子带频谱墒算法检测表面肌电信号肌肉疲劳性[J].中国医学物理学杂志,2020,37(10):1302.[doi:DOI:10.3969/j.issn.1005-202X.2020.10.015]
 BAO Qiyang,WANG Junxia,YUE Xiaoli.Detection of muscle fatigue based on surface electromyography signals segmented by subband spectral entropy algorithm[J].Chinese Journal of Medical Physics,2020,37(3):1302.[doi:DOI:10.3969/j.issn.1005-202X.2020.10.015]
[5]冯凯,董秀成,刘栋博.基于经验模态分解-小波包变换的表面肌电信号手势识别[J].中国医学物理学杂志,2021,38(4):461.[doi:DOI:10.3969/j.issn.1005-202X.2021.04.013]
 FENG Kai,DONG Xiucheng,LIU Dongbo.Empirical mode decomposition and wavelet packet transform applied to surface EMG signal for hand gesture recognition[J].Chinese Journal of Medical Physics,2021,38(3):461.[doi:DOI:10.3969/j.issn.1005-202X.2021.04.013]
[6]周明娟,王语园,王田戈,等.针对微弱表面肌电信号的采集电路设计[J].中国医学物理学杂志,2021,38(5):625.[doi:DOI:10.3969/j.issn.1005-202X.2021.05.019]
 ZHOU Mingjuan,WANG Yuyuan,WANG Tiange,et al.Design of acquisition circuit for weak surface electromyography signals[J].Chinese Journal of Medical Physics,2021,38(3):625.[doi:DOI:10.3969/j.issn.1005-202X.2021.05.019]
[7]张夏丰,阚秀,曹乐,等.基于肌电信号与肌肉形变信号的手语识别[J].中国医学物理学杂志,2021,38(11):1392.[doi:DOI:10.3969/j.issn.1005-202X.2021.11.014]
 ZHANG Xiafeng,KAN Xiu,CAO Le,et al.Sign language recognition based on electromyogram signal and muscle deformation signal[J].Chinese Journal of Medical Physics,2021,38(3):1392.[doi:DOI:10.3969/j.issn.1005-202X.2021.11.014]
[8]张建华,王豪,李克祥,等.基于KPCA的膝关节多模式连续运动估计[J].中国医学物理学杂志,2023,40(6):742.[doi:DOI:10.3969/j.issn.1005-202X.2023.06.012]
 ZHANG Jianhua,WANG Hao,LI Kexiang,et al.KPCA-based continuous motion estimation of knee joint in multiple motion modes[J].Chinese Journal of Medical Physics,2023,40(3):742.[doi:DOI:10.3969/j.issn.1005-202X.2023.06.012]
[9]张思河,曹乐,王金玮,等.基于表面肌电信号的BiLSTM-SA双臂肌力估计[J].中国医学物理学杂志,2023,40(11):1383.[doi:DOI:10.3969/j.issn.1005-202X.2023.11.011]
 ZHANG Sihe,CAO Le,WANG Jinwei,et al.BiLSTM-SA model for muscle strength estimation from sEMG[J].Chinese Journal of Medical Physics,2023,40(3):1383.[doi:DOI:10.3969/j.issn.1005-202X.2023.11.011]

备注/Memo

备注/Memo:
【收稿日期】2019-10-22 【基金项目】国家自然科学基金(61571371);教育部春晖计划项目(Z2018118);西华大学大健康开放课题(DJKG2019-003) 【作者简介】雷建超,硕士,研究方向:生物医学信号处理,E-mail: 1028546619@qq.com 【通信作者】刘栋博,讲师,博士,研究方向:智能控制、模式识别,E-mail: 1101872452@qq.com
更新日期/Last Update: 2020-04-02