[1]丁正敏,熊冬生,陈宇珂,等. 基于脑电样本熵和小波熵的麻醉深度监测[J].中国医学物理学杂志,2018,35(2):243-248.[doi:DOI:10.3969/j.issn.1005-202X.2018.02.024]
 DING Zhengmin,XIONG Dongsheng,CHEN Yuke,et al. Sample entropy and wavelet entropy of electroencephalogram for monitoring the depth of anesthesia[J].Chinese Journal of Medical Physics,2018,35(2):243-248.[doi:DOI:10.3969/j.issn.1005-202X.2018.02.024]
点击复制

 基于脑电样本熵和小波熵的麻醉深度监测()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
35卷
期数:
2018年第2期
页码:
243-248
栏目:
脑科学与神经物理
出版日期:
2018-02-08

文章信息/Info

Title:
 Sample entropy and wavelet entropy of electroencephalogram for monitoring the depth of anesthesia
文章编号:
1005-202X(2018)02-0243-06
作者:
 丁正敏1熊冬生1陈宇珂2张兴安3窦建洪3谌雅雨3
 1.华南理工大学材料科学与工程学院生物医学工程系, 广东 广州 510006; 2.广州军区总医院设备科, 广东 广州 510010; 3.广州军区总医院麻醉科, 广东 广州 510010
Author(s):
DING Zhengmin1 XIONG Dongsheng1 CHEN Yuke2 ZHANG Xing’an3 DOU Jianhong3 CHEN Yayu3
 1. Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, China; 2. Department of Equipment, General Hospital of Guangzhou Military Command of PLA, Guangzhou 510010, China; 3. Department of Anesthesia, General Hospital of Guangzhou Military Command of PLA, Guangzhou 510010, China
关键词:
 麻醉深度脑电样本熵小波熵
Keywords:
 depth of anesthesia electroencephalogram sample entropy wavelet entropy
分类号:
R318.6
DOI:
DOI:10.3969/j.issn.1005-202X.2018.02.024
文献标志码:
A
摘要:
 目的:通过研究全麻手术病人的脑电信号特征,从分类准确率、算法难易程度、计算时间等方面讨论样本熵和小波熵算法在麻醉深度监测中的应用。 方法:基于脑电信号的非线性和不稳定性,采用两种非线性动力学分析方法(样本熵和小波熵)对30例全麻手术病人的脑电信号进行特征提取,并对每位病人清醒状态、轻度麻醉状态和中度麻醉状态下的脑电信号的样本熵和小波熵进行差异分析。 结果:不同麻醉状态下的脑电信号的样本熵和小波熵均有明显差异。相同脑电信号的样本熵的变化阈值较小波熵的变化阈值大。 结论:样本熵和小波熵算法均可以作为麻醉深度监测的有效指标。从分类准确率、算法难易程度和计算时间等方面考虑,使用样本熵算法的效果优于小波熵算法。
Abstract:
 Objective To research the characteristics of the electroencephalogram (EEG) signals of patients under general anesthesia, and to compare the performances of sample entropy and wavelet entropy algorithms in monitoring the depth of anesthesia, including classification accuracy, calculation complexity and calculation time. Methods Based on the characteristics of nonlinearity and instability of EEG signals, two kinds of nonlinear dynamics analysis methods, namely sample entropy algorithm and wavelet entropy algorithm, were used to extract the characteristics of the EEG signals of 30 patients under general anesthesia. The sample entropy and wavelet entropy of the EEG signals of patients under different anesthesia states (including waking state, light anesthesia and moderate anesthesia) were also compared with variance analysis. Results The sample entropy and wavelet entropy of the EEG signals under different states was significantly different. Moreover, the change threshold of sample entropy was larger than that of wavelet entropy. Conclusion Both sample entropy and wavelet entropy algorithms can be used as effective indicators for monitoring the depth of anesthesia, but when classification accuracy, calculation complexity and calculation time are taken into consideration, sample entropy algorithm is better than wavelet entropy algorithm.

相似文献/References:

[1]董亮,张兴安,熊冬生,等.基于TCI麻醉深度智能控制系统的设计[J].中国医学物理学杂志,2013,30(02):4052.[doi:10.3969/j.issn.1005-202X.2013.02.021]
[2]顾家军,叶继伦.麻醉深度监测中脑电信号特征提取方法[J].中国医学物理学杂志,2016,33(2):157.[doi:10.3969/j.issn.1005-202X.2016.02.010]
 [J].Chinese Journal of Medical Physics,2016,33(2):157.[doi:10.3969/j.issn.1005-202X.2016.02.010]
[3]王遥,霍万里,熊壮,等.TACE手术中不同站姿下铅眼镜和铅面罩对医生眼晶状体防护效果的蒙特卡洛模拟比较[J].中国医学物理学杂志,2016,33(6):553.[doi:DOI:10.3969/j.issn.1005-202X.2016.06.003]
 [J].Chinese Journal of Medical Physics,2016,33(2):553.[doi:DOI:10.3969/j.issn.1005-202X.2016.06.003]
[4]张新,谷晓芳,王培臣,等.轻离子束治疗设备注册检验关键技术问题[J].中国医学物理学杂志,2016,33(6):559.[doi:10.3969/j.issn.1005-202X.2016.06.004]
 [J].Chinese Journal of Medical Physics,2016,33(2):559.[doi:10.3969/j.issn.1005-202X.2016.06.004]
[5]江芬芬,王培,康盛伟,等. 热释光剂量片测量肺部肿瘤放疗剂量的方法[J].中国医学物理学杂志,2016,33(6):564.[doi:10.3969/j.issn.1005-202X.2016.06.005]
 [J].Chinese Journal of Medical Physics,2016,33(2):564.[doi:10.3969/j.issn.1005-202X.2016.06.005]
[6]刘洪源,彭威,杨锐,等. 锥形束CT离线校正肺癌摆位误差[J].中国医学物理学杂志,2016,33(6):573.[doi:10.3969/j.issn.1005-202X.2016.06.007]
 [J].Chinese Journal of Medical Physics,2016,33(2):573.[doi:10.3969/j.issn.1005-202X.2016.06.007]
[7]赵彪,潘香,杨毅,等. 右乳癌保乳术后瘤床同步X线和后程电子线补量调强放疗剂量学比较[J].中国医学物理学杂志,2016,33(6):576.[doi:10.3969/j.issn.1005-202X.2016.06.008]
 [J].Chinese Journal of Medical Physics,2016,33(2):576.[doi:10.3969/j.issn.1005-202X.2016.06.008]
[8]邓南,钱建庭,刁现芬,等. 基于宽带检测放疗X-光光声效应仿体实验[J].中国医学物理学杂志,2016,33(9):865.[doi:DOI:10.3969/j.issn.1005-202X.2016.09.001]
 [J].Chinese Journal of Medical Physics,2016,33(2):865.[doi:DOI:10.3969/j.issn.1005-202X.2016.09.001]
[9]张先稳,李军,张西志,等. 宫颈癌术后5野调强放疗4个变量组合的最佳治疗模式的剂量学[J].中国医学物理学杂志,2016,33(9):872.[doi:10.3969/j.issn.1005-202X.2016.09.002]
 [J].Chinese Journal of Medical Physics,2016,33(2):872.[doi:10.3969/j.issn.1005-202X.2016.09.002]
[10]胡健,李承军,徐利明,等. 床面倾斜对剂量验证通过率的影响[J].中国医学物理学杂志,2016,33(9):881.[doi:10.3969/j.issn.1005-202X.2016.09.003]
 [J].Chinese Journal of Medical Physics,2016,33(2):881.[doi:10.3969/j.issn.1005-202X.2016.09.003]
[11]苏克阳,曾景阳,谢文钦,等. 近似熵在脑电监测麻醉深度中的应用[J].中国医学物理学杂志,2019,36(1):117.[doi:DOI:10.3969/j.issn.1005-202X.2019.01.023]
 SU Keyang,ZENG Jingyang,XIE Wenqin,et al. Application of EEG approximate entropy in monitoring the depth of anesthesia[J].Chinese Journal of Medical Physics,2019,36(2):117.[doi:DOI:10.3969/j.issn.1005-202X.2019.01.023]

备注/Memo

备注/Memo:
【收稿日期】2017-08-28
【基金项目】广东省科技计划项目(2013B090500113)
【作者简介】丁正敏,硕士研究生,研究方向:生物医学电子与仪器,E-mail: 1032767568@qq.com.
【通信作者】熊冬生,副教授,研究方向:生物医学电子与仪器,E-mail: btlxiong@scut.edu.cn
更新日期/Last Update: 2018-01-29