[1]张喜珍,张晓莉,吕洋,等.基于2D-CNN和Cox-Stuart早停机制的癫痫预测模型[J].中国医学物理学杂志,2025,42(1):82-94.[doi:DOI:10.3969/j.issn.1005-202X.2025.01.012]
 ZHANG Xizhen,ZHANG Xiaoli,et al.Epilepsy prediction model based on 2D-CNN and Cox-Stuart early stopping mechanism[J].Chinese Journal of Medical Physics,2025,42(1):82-94.[doi:DOI:10.3969/j.issn.1005-202X.2025.01.012]
点击复制

基于2D-CNN和Cox-Stuart早停机制的癫痫预测模型()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
42
期数:
2025年第1期
页码:
82-94
栏目:
医学信号处理与医学仪器
出版日期:
2025-01-19

文章信息/Info

Title:
Epilepsy prediction model based on 2D-CNN and Cox-Stuart early stopping mechanism
文章编号:
1005-202X(2025)01-0082-13
作者:
张喜珍12张晓莉12吕洋3陈扶明2
1.甘肃中医药大学医学信息工程学院, 甘肃 兰州 730050; 2.中国人民解放军联勤保障部队第940医院医疗保障中心, 甘肃 兰州 730050; 3.中国人民解放军联勤保障部队第940医院眼科, 甘肃 兰州 730050
Author(s):
ZHANG Xizhen1 2 ZHANG Xiaoli1 2 L?Yang3 CHEN Fuming2
1. School of Medical Information Engineering, Gansu University of Chinese Medicine, Lanzhou 730050, China 2. Medical Security Center, The 940th Hospital of Joint Logistics Support Force of Chinese Peoples Liberation Army, Lanzhou 730050, China 3. Department of Ophthalmology, The 940th Hospital of Joint Logistics Support Force of Chinese Peoples Liberation Army, Lanzhou 730050, China
关键词:
癫痫预测Cox-Stuart检验法2D-CNN深度学习
Keywords:
Keywords: epilepsy prediction Cox-Stuart test two-dimensional convolutional neural network deep learning
分类号:
R318;TP912.35
DOI:
DOI:10.3969/j.issn.1005-202X.2025.01.012
文献标志码:
A
摘要:
针对如何有效预测癫痫患者是否将要发病这一问题,提出一种基于非独立患者的2维卷积神经网络(2D-CNN)和Cox-Stuart检验法的癫痫预测模型方法。首先对脑电数据做归一化处理,使用陷波滤波器和高通滤波器滤除脑电信号的噪声;将滤波后的信号输入到2D-CNN模型中进行特征提取和分类,使用Cox-Stuart方法检测是否需要早停,从而降低模型的计算复杂度和时间复杂度。此外,分别在发作前期为10、30、60 min的情况下对模型进行测试,结果显示,发作前期为10 min时,模型的效果最优。在测试集上的准确率为97.70%,灵敏度为97.36%,特异性为98.04%,具有良好的性能。
Abstract:
An epilepsy prediction model based on two-dimensional convolutional neural network and Cox-Stuart test for non-independent patients is proposed to address the problem of how to effectively predict whether epilepsy patients are going to have an attack or not. After EEG data normalization and EEG signal noise removal using a notch filter and a high-pass filter, the filtered signals are inputted into the two-dimensional convolutional neural network model for feature extraction and classification, and Cox-Stuart test is used to determine whether an early stopping is needed or not, thereby reducing the computational and time complexities of the model. The model is tested under the conditions with pre-seizure periods of 10, 30 and 60 min, respectively, and the results show that the model performs best when the pre-seizure period is 10 min. The model has an average accuracy, sensitivity and specificity of 97.70%, 97.36% and 98.04% on the test set, demonstrating its superior performance.

相似文献/References:

[1]李凯,姜永涛,于海波,等.癫痫治疗效果的复杂度评估分析[J].中国医学物理学杂志,2013,30(03):4169.[doi:10.3969/j.issn.1005-202X.2013.03.019]
[2]崔招焕,等.大鼠癫痫脑电信号采集[J].中国医学物理学杂志,2016,33(2):118.[doi:10.3969/j.issn.1005-202X.2016.02.003]
 [J].Chinese Journal of Medical Physics,2016,33(1):118.[doi:10.3969/j.issn.1005-202X.2016.02.003]
[3]卢晓光,闫剑,梅齐,等.基于自回归模型功率谱估计预测放射治疗中靶区的呼吸运动[J].中国医学物理学杂志,2016,33(10):992.[doi:10.3969/j.issn.1005-202X.2016.10.004]
 [J].Chinese Journal of Medical Physics,2016,33(1):992.[doi:10.3969/j.issn.1005-202X.2016.10.004]
[4]李春,黄波,唐海宁,等. 癫痫伴发焦虑抑郁患者脑神经递质活动的脑电超慢涨落图表现分析[J].中国医学物理学杂志,2018,35(3):369.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.022]
 LI Chun,HUANG Bo,TANG Haining,et al. Characteristics of intracerebral neurotransmitter activity on encephalofluctuograph in epileptic patients with anxiety and depression[J].Chinese Journal of Medical Physics,2018,35(1):369.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.022]
[5]张宣,刘安康,张培玲.基于嵌入式AI的癫痫发作监测系统实现[J].中国医学物理学杂志,2022,39(9):1151.[doi:DOI:10.3969/j.issn.1005-202X.2022.09.016]
 ZHANG Xuan,LIU Ankang,ZHANG Peiling.Implementation of seizure monitoring system based on embedded AI[J].Chinese Journal of Medical Physics,2022,39(1):1151.[doi:DOI:10.3969/j.issn.1005-202X.2022.09.016]
[6]汤秣雄,李效龙.一种无线闭环迷走神经刺激器及系统[J].中国医学物理学杂志,2022,39(12):1530.[doi:DOI:10.3969/j.issn.1005-202X.2022.12.012]
 TANG Moxiong,LI Xiaolong.Wireless closed-loop vagus nerve stimulator and its system[J].Chinese Journal of Medical Physics,2022,39(1):1530.[doi:DOI:10.3969/j.issn.1005-202X.2022.12.012]
[7]陈明武,郑诗豪,杨波,等.CTP灌注参数联合脑电图对aSAH继发癫痫及预后的价值分析[J].中国医学物理学杂志,2023,40(2):182.[doi:DOI:10.3969/j.issn.1005-202X.2023.02.009]
 CHEN Mingwu,ZHENG Shihao,YANG Bo,et al.Predictive value of CTP parameters combined with electroencephalogram for epilepsy secondary to aSAH and the prognosis[J].Chinese Journal of Medical Physics,2023,40(1):182.[doi:DOI:10.3969/j.issn.1005-202X.2023.02.009]
[8]胡保华,朱宗俊,穆景颂,等.基于C-FFuzzyEn的神经电生理信号同步性分析[J].中国医学物理学杂志,2023,40(5):589.[doi:DOI:10.3969/j.issn.1005-202X.2023.05.011]
 HU Baohua,ZHU Zongjun,MU Jingsong,et al.Neural electrophysiological signal synchronization analysis using C-FFuzzyEn[J].Chinese Journal of Medical Physics,2023,40(1):589.[doi:DOI:10.3969/j.issn.1005-202X.2023.05.011]
[9]于永强,刘健,孙仁诚,等.基于多特征多关系图卷积神经网络的癫痫脑电分类[J].中国医学物理学杂志,2023,40(5):595.[doi:DOI:10.3969/j.issn.1005-202X.2023.05.012]
 YU Yongqiang,LIU Jian,SUN Rencheng,et al.Classification of epileptic electroencephalogram signal using graph convolutional neural network with multiple features and multiple relations[J].Chinese Journal of Medical Physics,2023,40(1):595.[doi:DOI:10.3969/j.issn.1005-202X.2023.05.012]
[10]高晨洋,吴凯,李文豪,等.EEG-fNIRS技术在神经精神疾病研究中的应用进展[J].中国医学物理学杂志,2024,41(3):348.[doi:DOI:10.3969/j.issn.1005-202X.2024.03.013]
 GAO Chenyang,WU Kai,,et al.Advances in application of EEG-fNIRS technology in researches on neuropsychiatric disorders[J].Chinese Journal of Medical Physics,2024,41(1):348.[doi:DOI:10.3969/j.issn.1005-202X.2024.03.013]

备注/Memo

备注/Memo:
【收稿日期】2024-09-11 【基金项目】国家自然科学基金(61901515,82000926);甘肃省自然科学基金(22JR5RA002) 【作者简介】张喜珍,研究方向:生物医学信号检测与处理,E-mail: 2252403239@qq.com 【通信作者】陈扶明,高级工程师,研究方向:生物医学信号检测与处理,E-mail: cfm5762@126.com
更新日期/Last Update: 2025-01-19