[1]李迪,姚旭峰.阿尔茨海默病早期检测的多模态深度学习研究进展[J].中国医学物理学杂志,2025,42(1):20-26.[doi:DOI:10.3969/j.issn.1005-202X.2025.01.004]
 LI DI,YAO Xufeng.Advances in multimodal deep learning for early detection of Alzheimers disease[J].Chinese Journal of Medical Physics,2025,42(1):20-26.[doi:DOI:10.3969/j.issn.1005-202X.2025.01.004]
点击复制

阿尔茨海默病早期检测的多模态深度学习研究进展()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
42
期数:
2025年第1期
页码:
20-26
栏目:
医学影像物理
出版日期:
2025-01-19

文章信息/Info

Title:
Advances in multimodal deep learning for early detection of Alzheimers disease
文章编号:
1005-202X(2025)01-0020-07
作者:
李迪12姚旭峰2
1.上海理工大学健康科学与工程学院, 上海 200093; 2.上海健康医学院医学影像学院, 上海 201318
Author(s):
LI DI1 2 YAO Xufeng2
1. School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China 2. School of Medical Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
关键词:
阿尔茨海默病多模态深度学习神经影像
Keywords:
Keywords: Alzheimers disease multimodal deep learning neuroimaging
分类号:
R318
DOI:
DOI:10.3969/j.issn.1005-202X.2025.01.004
文献标志码:
A
摘要:
阿尔茨海默病(AD)是一种慢性神经退行性疾病,主要影响大脑中的神经元,尤其是与记忆、思考和行为相关的区域。在AD的辅助诊断过程中,来自影像学、遗传学、转录组学等多种形式的海量数据以及临床特征为挖掘潜在的AD分子标志物和AD的早期诊断和干预提供新的依据。近年来,深度学习模型在AD影像分类中展现出强大的特征学习和预测能力。为进一步提高分类性能,研究者将多种模态数据有效融合,提供更丰富的互补信息。该文介绍了AD常用的神经影像学数据集与评价标准,分析了各模态数据在AD分类中的应用,重点对多模态数据在AD分类诊断中的应用进行梳理分析,讨论经典深度学习网络模型在AD分类诊断中的应用,以期为进一步研究多模态深度学习技术提供思路。
Abstract:
Alzheimers disease (AD) is a chronic neurodegenerative disease that mainly affects neurons in the brain, especially in regions related to memory, thinking, and behavior. During the auxiliary diagnosis of AD, massive data from imaging, genetics, transcriptomics as well as clinical features provide a new basis for mining potential molecular markers and the early diagnosis and intervention of AD. In recent years, deep learning models have shown strong feature learning and prediction capabilities in AD image classification and the researchers will effectively integrate various modal data to provide richer complementary information for further improving the classification performance. Herein the review introduces the commonly used neuroimaging data sets and evaluation criteria for AD, analyzes the application of various modal data in AD classification, focusing on the application of multimodal data in AD classification diagnosis, discuss the application of the classic deep learning network model in AD classification diagnosis, aiming to provide ideas for further research on multimodal deep learning technology.

相似文献/References:

[1]王远军,姜博宇,靳珍怡,等.基于小波变换的医学图像融合方法综述[J].中国医学物理学杂志,2013,30(06):4530.[doi:10.3969/j.issn.1005-202X.2013.06.016]
[2]林江,戴齐,欧阳婷雪,等.一种边界和马尔可夫随机场相结合的脑MRI医学图像分割方法[J].中国医学物理学杂志,2015,32(05):717.[doi:doi:10.3969/j.issn.1005-202X.2015.05.023]
 [J].Chinese Journal of Medical Physics,2015,32(1):717.[doi:doi:10.3969/j.issn.1005-202X.2015.05.023]
[3]李均,杨澄,王远军,等.基于弥散张量成像构建阿尔茨海默病患者脑网络的研究进展[J].中国医学物理学杂志,2017,34(2):204.[doi:10.3969/j.issn.1005-202X.2017.02.018]
 Progress in brain network construction for patients with Alzheimer’s disease based on diffusion tensor imaging[J].Chinese Journal of Medical Physics,2017,34(1):204.[doi:10.3969/j.issn.1005-202X.2017.02.018]
[4]林富春,杨期东,何建川,等. 阿尔茨海默病大鼠氢质子磁共振波谱研究[J].中国医学物理学杂志,2017,34(10):1073.[doi:DOI:10.3969/j.issn.1005-202X.2017.10.021]
 [J].Chinese Journal of Medical Physics,2017,34(1):1073.[doi:DOI:10.3969/j.issn.1005-202X.2017.10.021]
[5]皮一飞,吴茜,裴曦,等.基于掩膜优化的多模态医学图像刚性配准[J].中国医学物理学杂志,2018,35(9):1022.[doi:10.3969/j.issn.1005-202X.2018.09.006]
 PI Yifei,WU Qian,PEI Xi,et al.Rigid registration of multimodal medical images based on mask optimization[J].Chinese Journal of Medical Physics,2018,35(1):1022.[doi:10.3969/j.issn.1005-202X.2018.09.006]
[6]谢丽娜,马瑾璐,韩苏夏. 多模态小动物成像设备在恶性肿瘤应用中的研究进展[J].中国医学物理学杂志,2019,36(10):1191.[doi:DOI:10.3969/j.issn.1005-202X.2019.10.015]
 XIE Lina,MA Jinlu,HAN Suxia. Progress of small animal multi-modality imaging equipment in research on malignant tumors[J].Chinese Journal of Medical Physics,2019,36(1):1191.[doi:DOI:10.3969/j.issn.1005-202X.2019.10.015]
[7]张泽茹,李兆同,刘良友,等.融合感知损失的深度学习在常规MR图像转换的研究[J].中国医学物理学杂志,2021,38(2):178.[doi:DOI:10.3969/j.issn.1005-202X.2021.02.010]
 ZHANG Zeru,LI Zhaotong,et al.Application of deep learning with perceptual loss in conventional MR image translation[J].Chinese Journal of Medical Physics,2021,38(1):178.[doi:DOI:10.3969/j.issn.1005-202X.2021.02.010]
[8]郭翌,吴香奕,吴茜,等.基于循环一致生成对抗网络的多模态影像刚性配准[J].中国医学物理学杂志,2021,38(2):198.[doi:DOI:10.3969/j.issn.1005-202X.2021.02.013]
 GUO Yi,WU Xiangyi,WU Qian,et al.Rigid registration of multimodal images based on CycleGAN[J].Chinese Journal of Medical Physics,2021,38(1):198.[doi:DOI:10.3969/j.issn.1005-202X.2021.02.013]
[9]沈镇炯,彭昭,孟祥银,等.基于级联3D U-Net的CT和MR视交叉自动分割方法[J].中国医学物理学杂志,2021,38(8):950.[doi:DOI:10.3969/j.issn.1005-202X.2021.08.006]
 SHEN Zhenjiong,PENG Zhao,MENG Xiangyin,et al.Automatic optic chiasm segmentation using CT and MRI based on cascaded 3D U-Net[J].Chinese Journal of Medical Physics,2021,38(1):950.[doi:DOI:10.3969/j.issn.1005-202X.2021.08.006]
[10]顾家军,叶继伦,陈谨,等.基于GRU的多模态麻醉深度评估方法研究[J].中国医学物理学杂志,2021,38(9):1148.[doi:10.3969/j.issn.1005-202X.2021.09.018]
 GU Jiajun,YE Jilun,CHEN Jin,et al.GRU-based multimodal anesthesia depth assessment[J].Chinese Journal of Medical Physics,2021,38(1):1148.[doi:10.3969/j.issn.1005-202X.2021.09.018]

备注/Memo

备注/Memo:
【收稿日期】2024-09-05 【基金项目】国家重点研发计划(2020YFC2008700);国家自然科学基金(61971275, 81830052);上海市科学技术委员会地方院校能力建设项目(23010502700) 【作者简介】李迪,硕士研究生,研究方向:图像处理,E-mail: ld2895698861@163.com 【通信作者】姚旭峰,教授,博士生导师,研究方向:医学影像处理、影像基因组学、人工智能,E-mail: yao6636329@hotmail.com
更新日期/Last Update: 2025-01-19