相似文献/References:
[1]王远军,姜博宇,靳珍怡,等.基于小波变换的医学图像融合方法综述[J].中国医学物理学杂志,2013,30(06):4530.[doi:10.3969/j.issn.1005-202X.2013.06.016]
[2]林江,戴齐,欧阳婷雪,等.一种边界和马尔可夫随机场相结合的脑MRI医学图像分割方法[J].中国医学物理学杂志,2015,32(05):717.[doi:doi:10.3969/j.issn.1005-202X.2015.05.023]
[J].Chinese Journal of Medical Physics,2015,32(1):717.[doi:doi:10.3969/j.issn.1005-202X.2015.05.023]
[3]李均,杨澄,王远军,等.基于弥散张量成像构建阿尔茨海默病患者脑网络的研究进展[J].中国医学物理学杂志,2017,34(2):204.[doi:10.3969/j.issn.1005-202X.2017.02.018]
Progress in brain network construction for patients with Alzheimer’s disease based on diffusion tensor imaging[J].Chinese Journal of Medical Physics,2017,34(1):204.[doi:10.3969/j.issn.1005-202X.2017.02.018]
[4]林富春,杨期东,何建川,等. 阿尔茨海默病大鼠氢质子磁共振波谱研究[J].中国医学物理学杂志,2017,34(10):1073.[doi:DOI:10.3969/j.issn.1005-202X.2017.10.021]
[J].Chinese Journal of Medical Physics,2017,34(1):1073.[doi:DOI:10.3969/j.issn.1005-202X.2017.10.021]
[5]皮一飞,吴茜,裴曦,等.基于掩膜优化的多模态医学图像刚性配准[J].中国医学物理学杂志,2018,35(9):1022.[doi:10.3969/j.issn.1005-202X.2018.09.006]
PI Yifei,WU Qian,PEI Xi,et al.Rigid registration of multimodal medical images based on mask optimization[J].Chinese Journal of Medical Physics,2018,35(1):1022.[doi:10.3969/j.issn.1005-202X.2018.09.006]
[6]谢丽娜,马瑾璐,韩苏夏. 多模态小动物成像设备在恶性肿瘤应用中的研究进展[J].中国医学物理学杂志,2019,36(10):1191.[doi:DOI:10.3969/j.issn.1005-202X.2019.10.015]
XIE Lina,MA Jinlu,HAN Suxia. Progress of small animal multi-modality imaging equipment in research on malignant tumors[J].Chinese Journal of Medical Physics,2019,36(1):1191.[doi:DOI:10.3969/j.issn.1005-202X.2019.10.015]
[7]张泽茹,李兆同,刘良友,等.融合感知损失的深度学习在常规MR图像转换的研究[J].中国医学物理学杂志,2021,38(2):178.[doi:DOI:10.3969/j.issn.1005-202X.2021.02.010]
ZHANG Zeru,LI Zhaotong,et al.Application of deep learning with perceptual loss in conventional MR image translation[J].Chinese Journal of Medical Physics,2021,38(1):178.[doi:DOI:10.3969/j.issn.1005-202X.2021.02.010]
[8]郭翌,吴香奕,吴茜,等.基于循环一致生成对抗网络的多模态影像刚性配准[J].中国医学物理学杂志,2021,38(2):198.[doi:DOI:10.3969/j.issn.1005-202X.2021.02.013]
GUO Yi,WU Xiangyi,WU Qian,et al.Rigid registration of multimodal images based on CycleGAN[J].Chinese Journal of Medical Physics,2021,38(1):198.[doi:DOI:10.3969/j.issn.1005-202X.2021.02.013]
[9]沈镇炯,彭昭,孟祥银,等.基于级联3D U-Net的CT和MR视交叉自动分割方法[J].中国医学物理学杂志,2021,38(8):950.[doi:DOI:10.3969/j.issn.1005-202X.2021.08.006]
SHEN Zhenjiong,PENG Zhao,MENG Xiangyin,et al.Automatic optic chiasm segmentation using CT and MRI based on cascaded 3D U-Net[J].Chinese Journal of Medical Physics,2021,38(1):950.[doi:DOI:10.3969/j.issn.1005-202X.2021.08.006]
[10]顾家军,叶继伦,陈谨,等.基于GRU的多模态麻醉深度评估方法研究[J].中国医学物理学杂志,2021,38(9):1148.[doi:10.3969/j.issn.1005-202X.2021.09.018]
GU Jiajun,YE Jilun,CHEN Jin,et al.GRU-based multimodal anesthesia depth assessment[J].Chinese Journal of Medical Physics,2021,38(1):1148.[doi:10.3969/j.issn.1005-202X.2021.09.018]