[1]张培玲,候康.基于多尺度自适应残差网络的癫痫检测方法[J].中国医学物理学杂志,2025,42(3):381-387.[doi:10.3969/j.issn.1005-202X.2025.03.015]
 ZHANG Peiling,HOU Kang.Epilepsy detection method based on multi-scale adaptive residual network[J].Chinese Journal of Medical Physics,2025,42(3):381-387.[doi:10.3969/j.issn.1005-202X.2025.03.015]
点击复制

基于多尺度自适应残差网络的癫痫检测方法()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
42
期数:
2025年第3期
页码:
381-387
栏目:
医学信号处理与医学仪器
出版日期:
2025-03-20

文章信息/Info

Title:
Epilepsy detection method based on multi-scale adaptive residual network
文章编号:
1005-202X(2025)03-0381-07
作者:
张培玲候康
河南理工大学物理与电子信息学院,河南 焦作 454003
Author(s):
ZHANG Peiling HOU Kang
School of Physics and Electronic Information, Henan Polytechnic University, Jiaozuo 454003, China
关键词:
脑电信号癫痫经验模态分解多尺度自适应残差网络注意力机制
Keywords:
electroencephalography signal epilepsy empirical mode decomposition multi-scale adaptive residual network attention mechanism
分类号:
R318TP391
DOI:
10.3969/j.issn.1005-202X.2025.03.015
文献标志码:
A
摘要:
针对现有癫痫检测方法输入数据单一、特征提取不充分问题,提出一种基于多尺度自适应残差网络的癫痫检测方 法。该方法首先对脑电信号使用经验模态分解获得 5 阶固有模态函数(IMF);接着将分解后的 5 阶 IMF 分别输入到多尺 度自适应残差网络(MSAR)中,该网络结合 CBAM-Residual 和多尺度自适应卷积网络用于提取信号的多尺度时频信息以 及细粒度特征;然后将 MSAR 提取的信号特征进行融合;最后输入到全连接层中实现分类。所提方法在 CHB-MIT 数据 集的分类准确率达到 98.94%,与现有方法相比取得了显著提升。
Abstract:
A novel approach based on multi-scale adaptive residual network (MSAR) is proposed to address the issues of single input data and inadequate feature extraction in current epilepsy detection approaches. The first 5 orders intrinsic mode functions for electroencephalography signal is obtained using empirical mode decomposition, and the decomposed the first 5 orders intrinsic mode functions are input into MSAR which incorporates CBAM-Residual and multi-scale adaptive convolutional network to extract multi-scale time-frequency information as well as fine-grained features of the signal. Subsequently, the signal features extracted by MSAR are fused and input into the fully connected layer to realize classification. The proposed approach obtains a classification accuracy of 98.94% on the CHB-MIT dataset, which is a notable improvement above the existing methods.

相似文献/References:

[1]王怡玲,覃玉荣,郭湛超,等.基于不同闪烁频率光刺激的脑电压变化研究[J].中国医学物理学杂志,2014,31(05):5184.[doi:10.3969/j.issn.1005-202X.2014.05.019]
[2]李凯,姜永涛,于海波,等.癫痫治疗效果的复杂度评估分析[J].中国医学物理学杂志,2013,30(03):4169.[doi:10.3969/j.issn.1005-202X.2013.03.019]
[3]杨建平,张德乾,吕敬祥,等.操作发起过程多脑区协作的脑电谱熵特征[J].中国医学物理学杂志,2016,33(1):44.[doi:DOI:10.3969/j.issn.1005-202X.2016.01.010]
 [J].Chinese Journal of Medical Physics,2016,33(3):44.[doi:DOI:10.3969/j.issn.1005-202X.2016.01.010]
[4]顾家军,叶继伦.麻醉深度监测中脑电信号特征提取方法[J].中国医学物理学杂志,2016,33(2):157.[doi:10.3969/j.issn.1005-202X.2016.02.010]
 [J].Chinese Journal of Medical Physics,2016,33(3):157.[doi:10.3969/j.issn.1005-202X.2016.02.010]
[5]刘岩,李幼军,陈萌. 基于固有模态分解和深度学习的抑郁症脑电信号分类分析[J].中国医学物理学杂志,2017,34(9):963.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.021]
 [J].Chinese Journal of Medical Physics,2017,34(3):963.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.021]
[6]李春,黄波,唐海宁,等. 癫痫伴发焦虑抑郁患者脑神经递质活动的脑电超慢涨落图表现分析[J].中国医学物理学杂志,2018,35(3):369.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.022]
 LI Chun,HUANG Bo,TANG Haining,et al. Characteristics of intracerebral neurotransmitter activity on encephalofluctuograph in epileptic patients with anxiety and depression[J].Chinese Journal of Medical Physics,2018,35(3):369.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.022]
[7]马玉良,刘卫星,张淞杰,等.基于ABC-SVM的运动想象脑电信号模式分类[J].中国医学物理学杂志,2018,35(9):1056.[doi:10.3969/j.issn.1005-202X.2018.09.012]
 MAYuliang,LIUWeixing,ZHANG Songjie,et al.Pattern classification of motor imagery EEG signals based on ABC-SVM algorithm[J].Chinese Journal of Medical Physics,2018,35(3):1056.[doi:10.3969/j.issn.1005-202X.2018.09.012]
[8]刘畅,覃玉荣,时文健.视听觉刺激下大脑头皮电位空间变化特性[J].中国医学物理学杂志,2018,35(10):1225.[doi:DOI:10.3969/j.issn.1005-202X.2018.010.023]
 LIU Chang,QIN Yurong,SHI Wenjian. Spatial variation characteristics of scalp potentials under audiovisual stimuli[J].Chinese Journal of Medical Physics,2018,35(3):1225.[doi:DOI:10.3969/j.issn.1005-202X.2018.010.023]
[9]周杰,杨国雨,徐涛. 基于空间频率与时间序列信息的多类运动想象脑电分类[J].中国医学物理学杂志,2019,36(1):81.[doi:DOI:10.3969/j.issn.1005-202X.2019.01.016]
 ZHOU Jie,YANG Guoyu,XU Tao. Classification of multi-class motor imagery EEG data based on spatial frequency and time-series information[J].Chinese Journal of Medical Physics,2019,36(3):81.[doi:DOI:10.3969/j.issn.1005-202X.2019.01.016]
[10]李冬,金韬,冯智英,等.基于脑电信号的疼痛强度识别方法研究[J].中国医学物理学杂志,2019,36(7):836.[doi:DOI:10.3969/j.issn.1005-202X.2019.07.017]
 LI Dong,JIN Tao,FENG Zhiying,et al.Pain intensity recognition based on EEG signals[J].Chinese Journal of Medical Physics,2019,36(3):836.[doi:DOI:10.3969/j.issn.1005-202X.2019.07.017]
[11]崔招焕,等.大鼠癫痫脑电信号采集[J].中国医学物理学杂志,2016,33(2):118.[doi:10.3969/j.issn.1005-202X.2016.02.003]
 [J].Chinese Journal of Medical Physics,2016,33(3):118.[doi:10.3969/j.issn.1005-202X.2016.02.003]
[12]张宣,刘安康,张培玲.基于嵌入式AI的癫痫发作监测系统实现[J].中国医学物理学杂志,2022,39(9):1151.[doi:DOI:10.3969/j.issn.1005-202X.2022.09.016]
 ZHANG Xuan,LIU Ankang,ZHANG Peiling.Implementation of seizure monitoring system based on embedded AI[J].Chinese Journal of Medical Physics,2022,39(3):1151.[doi:DOI:10.3969/j.issn.1005-202X.2022.09.016]
[13]汤秣雄,李效龙.一种无线闭环迷走神经刺激器及系统[J].中国医学物理学杂志,2022,39(12):1530.[doi:DOI:10.3969/j.issn.1005-202X.2022.12.012]
 TANG Moxiong,LI Xiaolong.Wireless closed-loop vagus nerve stimulator and its system[J].Chinese Journal of Medical Physics,2022,39(3):1530.[doi:DOI:10.3969/j.issn.1005-202X.2022.12.012]

备注/Memo

备注/Memo:
【收稿日期】2024-10-09 【基金项目】国家自然科学基金(62101176);河南省高等学校大学生创 新创业训练计划(202210460071) 【作者简介】张培玲,博士,副教授,研究方向:通信技术和信号处理, E-mail: plzhang@hpu.edu.cn
更新日期/Last Update: 2025-03-27