[1]崔楠,陈雨凡,柏通,等.甲状腺结节AI超声辅助诊断系统在住院医师规范化培训教学中的应用[J].中国医学物理学杂志,2023,40(10):1233-1236.[doi:DOI:10.3969/j.issn.1005-202X.2023.10.007]
 CUI Nan,CHEN Yufan,BAI Tong,et al.Application of ACR TI-RADS-based computer-aided diagnosis system for thyroid nodules in the teaching practice of standardized training for resident doctors[J].Chinese Journal of Medical Physics,2023,40(10):1233-1236.[doi:DOI:10.3969/j.issn.1005-202X.2023.10.007]
点击复制

甲状腺结节AI超声辅助诊断系统在住院医师规范化培训教学中的应用()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
40卷
期数:
2023年第10期
页码:
1233-1236
栏目:
医学影像物理
出版日期:
2023-10-27

文章信息/Info

Title:
Application of ACR TI-RADS-based computer-aided diagnosis system for thyroid nodules in the teaching practice of standardized training for resident doctors
文章编号:
1005-202X(2023)10-1233-04
作者:
崔楠1陈雨凡2柏通1马力1刘红梅1
1.广东省第二人民医院超声科(广东省第二人民医院肌骨运动医学超声研究所), 广东 广州 510317; 2.南方医科大学第二临床医学院, 广东 广州 510317
Author(s):
CUI Nan1 CHEN Yufan2 BAI Tong1 MA Li1 LIU Hongmei1
1. Department of Ultrasound/Institute of Ultrasound in Musculoskeletal Sports Medicine, Guangdong Second Provincial General Hospital, Guangzhou 510317, China 2. The Second Clinical Medical College, Southern Medical University, Guangzhou 510317, China
关键词:
人工智能甲状腺结节超声医学住院医师规范化培训教学
Keywords:
Keywords: artificial intelligence thyroid nodule ultrasonic medicine standardized training for resident doctor teaching
分类号:
R318;R-4
DOI:
DOI:10.3969/j.issn.1005-202X.2023.10.007
文献标志码:
A
摘要:
目的:探讨甲状腺结节AI超声辅助诊断系统在住院医师规范化培训教学中的应用效果。方法:选取2019年1月至2019年12月在广东省第二人民医院行甲状腺手术及超声检查的108名患者,共155个甲状腺结节,由两位2年级超声专业住院医师采用2017年美国放射学会发布的甲状腺影像报告与数据系统甲状腺结节超声指南(ACR TI-RADS)评估甲状腺结节;之后两位住院医师联合基于ACR TI-RADS超声特征的AI超声辅助诊断系统的预测结果再次评估上述结节。诊断标准以甲状腺结节手术病理结果作为金标准。结果:通过AI超声辅助诊断系统后,两位住院医师诊断甲状腺结节的AUC均有所提高。另外,两位住院医师联合AI超声辅助诊断系统在识别甲状腺结节的点状强回声方面的能力均得到提高,其中一位医师在识别甲状腺结构、回声、形状、分叶或不规则方面也有所提高。结论:与传统教学模式相比,应用甲状腺结节的AI超声辅助诊断系统可以帮助住院医师在较短的时间内提高掌握ACR TI-RADS指南的熟悉度,提高对结节超声特征的识别能力,缩短培训周期,起到辅助临床教学培训的作用。
Abstract:
Abstract: Objective To explore the role of ACR TI-RADS-based computer-aided diagnosis system (MTIRADS) for thyroid nodules in the teaching practice of standardized resident training. Methods A total of 155 thyroid nodules which underwent thyroid surgery and ultrasonic examination from January to December 2019 were evaluated by two residents using 2017 American College of Radiology Thyroid Imaging Reporting and Data System (ACR TI-RADS). Then, the two residents referred to the prediction results of MTIRADS based on the ultrasonic features of ACR TI-RADS and revaluated the above nodules. The surgical and pathological findings of thyroid nodules were taken as the golden standard. Results After using MTIRADS for thyroid nodule diagnosis, the two residents achieved a higher AUC. In addition, the ability of the two residents to recognize the dotted high-echoes in thyroid nodules was improved after referring to MTIRADS results, and one of the residents improved the accuracy in identifying thyroid structure, echo, shape, lobulation or irregularity. Conclusion Compared with the traditional teaching mode, MTIRADS can help residents to increase their familiarity with ACR TI-RADS, improve their ability to recognize the ultrasonic features of nodules, shorten training cycle. MTIRADS could become an effective way in assisting clinical teaching and training.

相似文献/References:

[1]王弈,李传富.人工智能方法在医学图像处理中的研究新进展[J].中国医学物理学杂志,2013,30(03):4138.[doi:10.3969/j.issn.1005-202X.2013.03.013]
[2]王亚,李永欣,黄文华.人类脑计划的研究进展[J].中国医学物理学杂志,2016,33(2):109.[doi:10.3969/j.issn.1005-202X.2016.02.001]
 [J].Chinese Journal of Medical Physics,2016,33(10):109.[doi:10.3969/j.issn.1005-202X.2016.02.001]
[3]陆祎,朱景雨,汪登斌,等.双源CT双能非线性融合技术显示甲状腺疾病[J].中国医学物理学杂志,2016,33(10):1047.[doi:10.3969/j.issn.1005-202X.2016.10.014]
 [J].Chinese Journal of Medical Physics,2016,33(10):1047.[doi:10.3969/j.issn.1005-202X.2016.10.014]
[4]祁红琳,胡先玲,李传明,等. 基于MRI纹理特征的早期肝癌术后复发预测[J].中国医学物理学杂志,2017,34(9):908.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.010]
 [J].Chinese Journal of Medical Physics,2017,34(10):908.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.010]
[5]任慧雅,高宏博,李月秋,等. 石墨烯热疗对良性甲状腺结节的疗效[J].中国医学物理学杂志,2019,36(4):487.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.023]
 REN Huiya,GAO Hongbo,LI Yueqiu,et al. Therapeutic effects of graphene thermal therapy for benign thyroid nodules[J].Chinese Journal of Medical Physics,2019,36(10):487.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.023]
[6]纪春阳,徐秀林,王燕. 深度神经网络技术在肿瘤细胞识别中的应用[J].中国医学物理学杂志,2019,36(9):1113.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.022]
 JI Chunyang,XU Xiulin,WANG Yan. Application of deep neural network in tumor cell recognition[J].Chinese Journal of Medical Physics,2019,36(10):1113.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.022]
[7]王沛沛,李金凯,李彩虹,等.基于人工智能技术的危及器官自动勾画在胸部肿瘤中的应用[J].中国医学物理学杂志,2019,36(11):1346.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.019]
 WANG Peipei,LI Jinkai,LI Caihong,et al.Application of automatic organs-at-risk segmentation based on artificial intelligence technology in thoracic tumors[J].Chinese Journal of Medical Physics,2019,36(10):1346.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.019]
[8]莫梓华,高红霞,黄飚.人工智能在中枢神经系统疾病影像诊断中的应用进展[J].中国医学物理学杂志,2020,37(6):792.[doi:DOI:10.3969/j.issn.1005-202X.2020.06.025]
 MO Zihua,GAO Hongxia,et al.Application of artificial intelligence in imaging diagnosis of central nervous system diseases: a review[J].Chinese Journal of Medical Physics,2020,37(10):792.[doi:DOI:10.3969/j.issn.1005-202X.2020.06.025]
[9]魏莉,胡煜麟,肖汉,等.99Tcm-MIBI亲肿瘤显像对甲状腺结节的诊断价值[J].中国医学物理学杂志,2020,37(8):1030.[doi:DOI:10.3969/j.issn.1005-202X.2020.08.017]
 WEI Li,HU Yulin,XIAO Han,et al.Diagnostic value of technetium-99m methoxy-isobutyl-isonitrile for thyroid nodules[J].Chinese Journal of Medical Physics,2020,37(10):1030.[doi:DOI:10.3969/j.issn.1005-202X.2020.08.017]
[10]刘思远,张丽军,刘雷.人工智能在抗击新型冠状病毒肺炎疫情中的应用[J].中国医学物理学杂志,2020,37(8):1076.[doi:DOI:10.3969/j.issn.1005-202X.2020.08.026]
 LIU Siyuan,ZHANG Lijun,LIU Lei.Application of artificial intelligence in fighting against COVID-19 pandemic[J].Chinese Journal of Medical Physics,2020,37(10):1076.[doi:DOI:10.3969/j.issn.1005-202X.2020.08.026]

备注/Memo

备注/Memo:
【收稿日期】2023-05-16 【基金项目】广东省医学科研基金(A2023043) 【作者简介】崔楠,副主任医师,研究方向:超声诊断学,E-mail: 1257430379@qq.com 【通信作者】刘红梅,主任医师,研究方向:AI超声技术,E-mail: hongmeiliu3@163.com
更新日期/Last Update: 2023-10-27