[1]齐瑜鹏,赵言龙,郑浩然.一种通过代谢差异分析抑制SARS-CoV-2复制的靶点预测方法[J].中国医学物理学杂志,2023,40(12):1577-1584.[doi:DOI:10.3969/j.issn.1005-202X.2023.12.019]
 QI Yupeng,ZHAO Yanlong,ZHENG Haoran.Target prediction approach to inhibit SARS-CoV-2 replication based on metabolic difference analysis[J].Chinese Journal of Medical Physics,2023,40(12):1577-1584.[doi:DOI:10.3969/j.issn.1005-202X.2023.12.019]
点击复制

一种通过代谢差异分析抑制SARS-CoV-2复制的靶点预测方法()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
40卷
期数:
2023年第12期
页码:
1577-1584
栏目:
其他(激光医学等)
出版日期:
2023-12-27

文章信息/Info

Title:
Target prediction approach to inhibit SARS-CoV-2 replication based on metabolic difference analysis
文章编号:
1005-202X(2023)12-1577-08
作者:
齐瑜鹏赵言龙郑浩然
中国科学技术大学计算机科学与技术学院, 安徽 合肥 230027
Author(s):
QI Yupeng ZHAO Yanlong ZHENG Haoran
School of Computer Science and Technology, University of Science and Technology of China, Hefei 230027, China
关键词:
COVID-19SARS-CoV-2代谢差异分析靶点预测
Keywords:
Keywords: COVID-19 SARS-CoV-2 metabolic difference analysis target prediction
分类号:
R318
DOI:
DOI:10.3969/j.issn.1005-202X.2023.12.019
文献标志码:
A
摘要:
提出一种通过代谢差异分析抑制新型冠状病毒(SARS-CoV-2)复制进程的靶点预测方法。该方法基于肺宿主细胞的基因表达数据,重建病毒入侵后宿主细胞代谢系统发生变化的部分网络模型,并通过单基因敲除和细胞毒性测试识别候选靶点。此外,分析抗病毒靶点对目前已知的多种SARS-CoV-2变体的稳健性。结果表明,D-丙氨酸是影响SARS-CoV-2复制的关键代谢物,且适用于当前所有的SARS-CoV-2变体。调控D-丙氨酸的基因PLPBP是主要的基因靶点。本文方法具有通用性,适用于现有病毒及宿主细胞,为应对病毒性疾病提供新思路。
Abstract:
Abstract: A target prediction approach to inhibit SARS-CoV-2 replication through metabolic difference analysis is presented. The approach is based on gene expression data from lung host cells, reconstructs a network model of the parts of the host cell metabolic system that are reprogrammed after viral invasion, and identifies candidate targets using single-gene knockout and cytotoxicity test. The robustness of antiviral targets against multiple currently known variants of SARS-CoV-2 is also analyzed. The results indicate that D-alanine is a key metabolite affecting SARS-CoV-2 replication and is applicable to all current SARS-CoV-2 variants. The gene regulating D-alanine (PLPBP) is the main gene target. The proposed approach is applicable to the existing viruses and host cells, providing new ideas for viral disease management.

相似文献/References:

[1]刘发明,江桂华,杨宁,等.新型冠状病毒肺炎的影像组学研究[J].中国医学物理学杂志,2020,37(4):463.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.012]
 LIU Faming,JIANG Guihua,YANG Ning,et al.Radiomics analysis on COVID-19[J].Chinese Journal of Medical Physics,2020,37(12):463.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.012]
[2]邓靓娜,张斌,蒋健,等.窗宽和层厚在COVID-19磨玻璃征象中的诊断价值[J].中国医学物理学杂志,2020,37(5):619.[doi:10.3969/j.issn.1005-202X.2020.05.017]
 DENG Liangna,,et al.Diagnostic value of window width and slice thickness in ground glass opacity of COVID-19[J].Chinese Journal of Medical Physics,2020,37(12):619.[doi:10.3969/j.issn.1005-202X.2020.05.017]
[3]乔文俊,许乙凯,严承功,等.新型冠状病毒肺炎期间方舱CT感染防控经验[J].中国医学物理学杂志,2020,37(7):903.[doi:DOI:10.3969/j.issn.1005-202X.2020.07.020]
 QIAO Wenjun,XU Yikai,et al.Experience of COVID-19 prevention and control in shelter CT[J].Chinese Journal of Medical Physics,2020,37(12):903.[doi:DOI:10.3969/j.issn.1005-202X.2020.07.020]
[4]李碧草,王晶,郭旭伟,等.基于多尺度特征融合与反向注意力的COVID-19病灶分割[J].中国医学物理学杂志,2023,40(4):403.[doi:DOI:10.3969/j.issn.1005-202X.2023.04.002]
 LI Bicao,WANG Jing,GUO Xuwei,et al.COVID-19 lesion segmentation based on multi-scale feature fusion and reverse attention[J].Chinese Journal of Medical Physics,2023,40(12):403.[doi:DOI:10.3969/j.issn.1005-202X.2023.04.002]
[5]赵言龙,郑浩然.基于代谢分析的SARS-CoV-2药物靶点预测方法[J].中国医学物理学杂志,2023,40(11):1433.[doi:DOI:10.3969/j.issn.1005-202X.2023.11.019]
 ZHAO Yanlong,ZHENG Haoran.Drug target prediction approach for SARS-CoV-2 based on metabolic analysis[J].Chinese Journal of Medical Physics,2023,40(12):1433.[doi:DOI:10.3969/j.issn.1005-202X.2023.11.019]
[6]张子宇,赵可辉,牛慧芳,等.基于轻量级RG-DenseNet的COVID-19 CT图像分类[J].中国医学物理学杂志,2023,40(12):1494.[doi:DOI:10.3969/j.issn.1005-202X.2023.12.007]
 ZHANG Ziyu,ZHAO Kehui,NIU Huifang,et al.COVID-19 classification on CT image using lightweight RG DenseNet[J].Chinese Journal of Medical Physics,2023,40(12):1494.[doi:DOI:10.3969/j.issn.1005-202X.2023.12.007]

备注/Memo

备注/Memo:
【收稿日期】2023-06-15 【基金项目】国家重点基础研究发展计划(2017YFA0505502);中国科学院战略性先导科技专项(XDB38000000) 【作者简介】齐瑜鹏,硕士,主要从事生物信息学研究,E-mail: patrickqi@mail.ustc.edu.cn
更新日期/Last Update: 2023-12-27