[1]朱世祺,徐昶,周鑫,等.基于DeepLab V3+深度神经网络的结直肠息肉内镜图像分割[J].中国医学物理学杂志,2023,40(8):944-949.[doi:DOI:10.3969/j.issn.1005-202X.2023.08.004]
 ZHU Shiqi,XU Chang,et al.Colorectal polyp segmentation in endoscopic images using DeepLab V3+[J].Chinese Journal of Medical Physics,2023,40(8):944-949.[doi:DOI:10.3969/j.issn.1005-202X.2023.08.004]
点击复制

基于DeepLab V3+深度神经网络的结直肠息肉内镜图像分割()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
40卷
期数:
2023年第8期
页码:
944-949
栏目:
医学影像物理
出版日期:
2023-09-01

文章信息/Info

Title:
Colorectal polyp segmentation in endoscopic images using DeepLab V3+
文章编号:
1005-202X(2023)08-0944-06
作者:
朱世祺12徐昶12周鑫3刘璐12林嘉希12殷民月12刘晓琳12许春芳12朱锦舟12
1.苏州大学附属第一医院消化内科, 江苏 苏州 215006; 2.苏州市消化病临床医学中心, 江苏 苏州 215006; 3.江苏大学附属金坛医院消化内科, 江苏 常州 213200
Author(s):
ZHU Shiqi1 2 XU Chang1 2 ZHOU Xin3 LIU Lu1 2 LIN Jiaxi1 2 YIN Minyue1 2 LIU Xiaolin1 2 XU Chunfang1 2 ZHU Jinzhou1 2
1. Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China 2. Suzhou Clinical Centre of Digestive Disease, Suzhou 215006, China 3.Department of Gastroenterology, Jintan Affiliated Hospital of Jiangsu University, Changzhou 213200, China
关键词:
语义分割深度学习DeepLab V3+结直肠息肉
Keywords:
Keywords: semantic segmentation deep learning DeepLab V3+ colorectal polyp
分类号:
R318;R574
DOI:
DOI:10.3969/j.issn.1005-202X.2023.08.004
文献标志码:
A
摘要:
目的:基于深度神经网络DeepLab V3+建立结直肠息肉内镜图像语义分割模型。方法:选取Hyper-Kvasir数据库1 000张、苏州大学附属第一医院500张结直肠息肉内镜图像,分为训练集(n=1 200)和验证集(n=300),同时收集江苏大学附属金坛医院肠息肉图像作为测试集(n=220)。对内镜图像进行分割标记,载入以DeepLab V3+为框架的深度神经网络中训练,建立语义分割模型。结果:在内部验证集中,该模型的准确性(ACC)达97.2%,平均交并比(MIoU)达85.8%,Dice系数达0.924。在外部测试集中,ACC达98.0%,MIoU达80.1%,Dice系数达0.890。结论:基于DeepLab V3+深度神经网络,构建结直肠息肉内镜图像的语义分割模型,具有良好的预测性能,可作为检测结直肠息肉的有效工具。
Abstract:
Abstract: Objective To establish a semantic segmentation model for colorectal polyps in endoscopic images based on DeepLab V3+. Methods A total of 1 500 endoscopic images of colorectal polyps were collected, including 1 000 from Hyper-Kvasir public dataset and 500 from the First Affiliated Hospital of Soochow University, and randomly divided into training set (n=1 200) and validation set (n=300). Meanwhile, the images from Jintan Affiliated Hospital of Jiangsu University were collected as test set (n=220). After the endoscopic image segmentation and labeling, the images and masks were loaded into a deep learning neural network with DeepLab V3+ as the architecture for training, thereby developing a semantic segmentation model. Results The accuracy, mean intersection over union, and Dice coefficient of the developed model were 97.2%, 85.8% and 0.924 in the internal validation set, and 98.0%, 80.1% and 0.890 in the external test set. Conclusion The DeepLab V3+ based semantic segmentation model for colorectal polyps in endoscopic images exhibits excellent performances, and it can serve as an effective method for the detection and diagnosis of colorectal polyps.

相似文献/References:

[1]陶源,王佳飞,杜俊龙,等.基于卷积神经网络的细胞识别[J].中国医学物理学杂志,2017,34(1):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
 [J].Chinese Journal of Medical Physics,2017,34(8):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
[2]门阔,戴建荣. 利用深度反卷积神经网络自动勾画放疗危及器官[J].中国医学物理学杂志,2018,35(3):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
 MEN Kuo,DAI Jianrong. Automatic segmentation of organs at risk in radiotherapy using deep deconvolutional neural network[J].Chinese Journal of Medical Physics,2018,35(8):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
[3]邓金城,彭应林,刘常春,等. 深度卷积神经网络在放射治疗计划图像分割中的应用[J].中国医学物理学杂志,2018,35(6):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
 DENG Jincheng,PENG Yinglin,LIU Changchun,et al. Application of deep convolution neural network in radiotherapy planning image segmentation[J].Chinese Journal of Medical Physics,2018,35(8):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
[4]查雪帆,杨丰,吴俣南,等. 结合迁移学习与深度卷积网络的心电分类研究[J].中国医学物理学杂志,2018,35(11):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
 ZHA Xuefan,YANG Feng,WU Yunan,et al. ECG classification based on transfer learning and deep convolution neural network[J].Chinese Journal of Medical Physics,2018,35(8):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
[5]宫进昌,赵尚义,王远军. 基于深度学习的医学图像分割研究进展[J].中国医学物理学杂志,2019,36(4):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
 GONG Jinchang,ZHAO Shangyi,WANG Yuanjun.Research progress on deep learning-based medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(8):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
[6]安莹,黄能军,杨荣,等. 基于深度学习的心血管疾病风险预测模型[J].中国医学物理学杂志,2019,36(9):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
 AN Ying,HUANG Nengjun,YANG Rong,et al. Deep learning-based model for risk prediction of cardiovascular diseases[J].Chinese Journal of Medical Physics,2019,36(8):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
[7]徐航,随力,张靖雯,等.卷积神经网络在医学图像分割中的研究进展[J].中国医学物理学杂志,2019,36(11):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
 XU Hang,SUI Li,ZHANG Jingwen,et al.Progress on convolutional neural network in medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(8):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
[8]张富利,崔德琪,王秋生,等.基于深度学习和图谱库方法自动勾画肿瘤放疗中危及器官的比较[J].中国医学物理学杂志,2019,36(12):1486.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.024]
 ZHANG Fuli,CUI Deqi,WANG Qiusheng,et al.Comparative study of deep learning- versus Atlas-based auto-segmentation of organs-at-risk in tumor radiotherapy[J].Chinese Journal of Medical Physics,2019,36(8):1486.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.024]
[9]秦楠楠,薛旭东,吴爱林,等.基于U-net卷积神经网络的宫颈癌临床靶区和危及器官自动勾画的研究[J].中国医学物理学杂志,2020,37(4):524.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.023]
 QIN Nannan,XUE Xudong,WU Ailin,et al.Automatic segmentation of clinical target volumes and organs-at-risk in radiotherapy for cervical cancer using U-net convolutional neural network[J].Chinese Journal of Medical Physics,2020,37(8):524.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.023]
[10]薛湛琦,王远军.基于深度学习的多模态医学图像融合方法研究进展[J].中国医学物理学杂志,2020,37(5):579.[doi:10.3969/j.issn.1005-202X.2020.05.009]
 XUE Zhanqi,WANG Yuanjun.Advances in multimodal medical image fusion method based on deep learning[J].Chinese Journal of Medical Physics,2020,37(8):579.[doi:10.3969/j.issn.1005-202X.2020.05.009]
[11]温佳圆,林国钰,张逸文,等.应用深度学习网络实现肾小球滤过膜超微病理图像的语义分割[J].中国医学物理学杂志,2020,37(2):195.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.012]
 WEN Jiayuan,LIN Guoyu,ZHANG Yiwen,et al.Semantic segmentation of ultrastructural pathological images of glomerular filtration membrane using deep learning network[J].Chinese Journal of Medical Physics,2020,37(8):195.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.012]

备注/Memo

备注/Memo:
【收稿日期】2023-02-18 【基金项目】国家自然科学基金(82000540);苏州市科教兴卫青年项目(KJXW2019001);苏州大学医学部学生课外科研项目(2021YXBKWKY050);苏州市科技计划(SKY2021038);苏州市消化病临床医学中心(Szlcyxzx202101) 【作者简介】朱世祺,硕士,研究方向:人工智能在消化病中的应用,E-mail: 1830805021@stu.suda.edu.cn 【通信作者】朱锦舟,博士,副主任医师,研究方向:人工智能在消化病中的应用,E-mail: jzzhu@zju.edu.cn
更新日期/Last Update: 2023-09-06