[1]胡晓阳,李哲.基于卷积神经网络和Transformer的肝脏CT图像分割方法[J].中国医学物理学杂志,2023,40(4):423-428.[doi:DOI:10.3969/j.issn.1005-202X.2023.04.005]
 HU Xiaoyang,LI Zhe.Liver CT image segmentation method based on CNN and Transformer[J].Chinese Journal of Medical Physics,2023,40(4):423-428.[doi:DOI:10.3969/j.issn.1005-202X.2023.04.005]
点击复制

基于卷积神经网络和Transformer的肝脏CT图像分割方法()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
40卷
期数:
2023年第4期
页码:
423-428
栏目:
医学影像物理
出版日期:
2023-04-25

文章信息/Info

Title:
Liver CT image segmentation method based on CNN and Transformer
文章编号:
1005-202X(2023)04-0423-06
作者:
胡晓阳李哲
沈阳理工大学自动化与电气工程学院, 辽宁 沈阳 110000
Author(s):
HU Xiaoyang LI Zhe
School of Automation and Electrical Engineering, Shenyang Ligong University, Shenyang 110000, China
关键词:
卷积神经网络肝脏图像分割多头自注意力机制空洞卷积
Keywords:
Keywords: convolutional neural network liver image segmentation multi-head self-attention mechanism atrous convolution
分类号:
R318;TP391
DOI:
DOI:10.3969/j.issn.1005-202X.2023.04.005
文献标志码:
A
摘要:
针对现有的卷积神经网络在肝脏图像分割上精度较低的问题,提出了一种以U-Net网络模型为基础的分割算法。将多头自注意力机制引入到U-Net网络的跳跃连接中,在编码器部分使用空洞卷积,采用混合损失函数从而提高分割精度。在LITS数据集上通过实验结果表明,利用本文方法进行肝脏分割与传统U-Net方法相比Dice系数提升3.3%,平均交并比提升了2.4%,平均像素准确率提升了3.66%。
Abstract:
Abstract: Aiming at the problem of low accuracy of the existing convolutional neural network in liver image segmentation, a segmentation algorithm based on U-Net model is presented. The segmentation accuracy is improved using multi-head self-attention mechanism which was introduced into the skip connection of U-Net, atrous convolution in the encoder, and mixed loss function. The experimental results on LITS data set show that the Dice coefficient, mean itersection over union and mean pixel accuracy of liver segmentation using the proposed method are improved by 3.3%, 2.4% and 3.66% as compared with traditional U-Net method.

相似文献/References:

[1]陶源,王佳飞,杜俊龙,等.基于卷积神经网络的细胞识别[J].中国医学物理学杂志,2017,34(1):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
 [J].Chinese Journal of Medical Physics,2017,34(4):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
[2]玉泽伟,刘星星,方兆山. 3D虚拟软件系统在肝脏外科的应用现状[J].中国医学物理学杂志,2017,34(6):632.[doi:DOI:10.3969/j.issn.1005-202X.2017.06.018]
 [J].Chinese Journal of Medical Physics,2017,34(4):632.[doi:DOI:10.3969/j.issn.1005-202X.2017.06.018]
[3]仇清涛,段敬豪,巩贯忠,等.基于三维动态区域生长算法的肝脏自动分割[J].中国医学物理学杂志,2017,34(7):660.[doi:10.3969/j.issn.1005-202X.2017.07.002]
 [J].Chinese Journal of Medical Physics,2017,34(4):660.[doi:10.3969/j.issn.1005-202X.2017.07.002]
[4]刘岩,李幼军,陈萌. 基于固有模态分解和深度学习的抑郁症脑电信号分类分析[J].中国医学物理学杂志,2017,34(9):963.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.021]
 [J].Chinese Journal of Medical Physics,2017,34(4):963.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.021]
[5]冯庆,戴敏,马华怡,等. 恶性血液系统疾病患者肝脏真菌感染的CT表现[J].中国医学物理学杂志,2018,35(5):549.[doi:DOI:10.3969/j.issn.1005-202X.2018.05.010]
 FENG Qing,DAI Min,MA Huayi,et al. CT characteristics of hepatic fungal infections in patients with malignant hematological diseases[J].Chinese Journal of Medical Physics,2018,35(4):549.[doi:DOI:10.3969/j.issn.1005-202X.2018.05.010]
[6]张俊,朱金汉,庄永东,等. 基于卷积神经网络CT/CBCT影像质量自动分析[J].中国医学物理学杂志,2018,35(5):557.[doi:DOI:10.3969/j.issn.1005-202X.2018.05.012]
 ZHANG Jun,ZHU Jinhan,ZHUANG Yongdong,et al. Automatic analysis of CT/CBCT image quality based on convolutional neural network[J].Chinese Journal of Medical Physics,2018,35(4):557.[doi:DOI:10.3969/j.issn.1005-202X.2018.05.012]
[7]邓金城,彭应林,刘常春,等. 深度卷积神经网络在放射治疗计划图像分割中的应用[J].中国医学物理学杂志,2018,35(6):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
 DENG Jincheng,PENG Yinglin,LIU Changchun,et al. Application of deep convolution neural network in radiotherapy planning image segmentation[J].Chinese Journal of Medical Physics,2018,35(4):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
[8]申代友,库洪安,皮红英,等. 基于深度相机的老年跌倒监护系统[J].中国医学物理学杂志,2019,36(2):223.[doi:DOI:10.3969/j.issn.1005-202X.2019.02.019]
 SHEN Daiyou,KU Hongan,PI Hongying,et al. Depth camera-based fall detection system for the elderly[J].Chinese Journal of Medical Physics,2019,36(4):223.[doi:DOI:10.3969/j.issn.1005-202X.2019.02.019]
[9]宫进昌,赵尚义,王远军. 基于深度学习的医学图像分割研究进展[J].中国医学物理学杂志,2019,36(4):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
 GONG Jinchang,ZHAO Shangyi,WANG Yuanjun.Research progress on deep learning-based medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(4):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
[10]王自强,刘洪运,石金龙,等.基于卷积神经网络的心电图心博识别[J].中国医学物理学杂志,2019,36(8):938.[doi:DOI:10.3969/j.issn.1005-202X.2019.08.015]
 WANG Ziqiang,LIU Hongyun,SHI Jinlong,et al.ECG heartbeat recognition based on convolution neural network[J].Chinese Journal of Medical Physics,2019,36(4):938.[doi:DOI:10.3969/j.issn.1005-202X.2019.08.015]

备注/Memo

备注/Memo:
【收稿日期】2022-12-14 【基金项目】辽宁省高校创新人才项目(LR2019058);辽宁省重点科技创新基地联合开放基金(2021-KF-12-05) 【作者简介】胡晓阳,博士,副教授,研究方向:飞行体运动控制、武器系统设计与仿真、智能图像识别等,E-mail: xiaoyang_hu@163.com
更新日期/Last Update: 2023-04-25