[1]谭翔,戴振晖,何强,等.基于光学体表监控和X射线透视影像的膈肌运动自动跟踪[J].中国医学物理学杂志,2022,39(12):1453-1459.[doi:DOI:10.3969/j.issn.1005-202X.2022.12.001]
 TAN Xiang,DAI Zhenhui,HE Qiang,et al.Automated diaphragm motion tracking using optical surface monitoring system and X-ray fluoroscopic image[J].Chinese Journal of Medical Physics,2022,39(12):1453-1459.[doi:DOI:10.3969/j.issn.1005-202X.2022.12.001]
点击复制

基于光学体表监控和X射线透视影像的膈肌运动自动跟踪()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
39卷
期数:
2022年第12期
页码:
1453-1459
栏目:
医学放射物理
出版日期:
2022-12-25

文章信息/Info

Title:
Automated diaphragm motion tracking using optical surface monitoring system and X-ray fluoroscopic image
文章编号:
1005-202X(2022)12-1453-07
作者:
谭翔戴振晖何强张白霖朱琳蔡春雅杨耕简婉薇王学涛
广州中医药大学第二附属医院放射治疗区, 广东 广州 510006
Author(s):
TAN Xiang DAI Zhenhui HE Qiang ZHANG Bailin ZHU Lin CAI Chunya YANG Geng JIAN Wanwei WANG Xuetao
Department of Radiation Therapy, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
关键词:
膈肌跟踪人工智能光学体表监控系统透视影像
Keywords:
Keywords: diaphragm tracking artificial intelligence optical surface monitoring system fluoroscopic image
分类号:
R815.2
DOI:
DOI:10.3969/j.issn.1005-202X.2022.12.001
文献标志码:
A
摘要:
目的:基于直线加速器的光学体表监控系统和X射线透视影像利用人工智能构建膈肌顶点运动的自动跟踪模型。方法:同步采集7例肝肿瘤患者胸腹部的光学体表运动信息和千伏级X射线透视影像,选取其中3例患者数据利用主成分分析与偏最小二乘回归结合的方法计算不同体表感兴趣区域与膈肌运动的相关系数,选择相关系数最大的体表感兴趣区域作为光学体表监控区。首先,使用全卷积网络模型自动识别透视图像中膈肌顶点的位置;再利用随机森林方法建立体表与膈肌顶点运动的关联模型,基于体表运动信息实时预测膈肌顶点运动轨迹;最后,把自动跟踪的膈肌顶点位置与放疗医生手动勾画位置进行对比,以评估模型精度。结果:3例患者的体表感兴趣区域与膈肌运动的平均相关系数在前后(AP)方向最高达到(0.73±0.01) mm,上下(SI)方向最高达到(0.88±0.01) mm。自动跟踪模型预测结果与手动勾画位置的平均绝对误差和均方根误差SI方向分别为(3.09±0.79) mm和(3.89±0.89) mm,AP方向分别为(1.42±0.43) mm和(1.78±0.46) mm。结论:体表呼吸运动与体内膈肌运动是相关的,在放疗过程中基于光学体表运动信息可以实时跟踪体内膈肌顶点运动,该技术可用于胸腹部肿瘤放疗期间膈肌附近肿瘤的实时及无创运动管理。
Abstract:
Abstract: Objective To establish an automated diaphragm apex motion tracking model with artificial intelligence based on the optical surface monitoring system of linear accelerator and X-ray fluoroscopic image. Methods The optical surface motion information and kV X-ray fluoroscopic images of the thoracic and abdominal regions in 7 patients with liver tumors were acquired synchronously. The principal component analysis combined with partial least squares regression was used to calculate the correlation coefficients between several body surface regions of interest and diaphragm motion in 3 patients from 7 patients, and the body surface region of interest with the largest correlation coefficient was selected as the optical surface monitoring area. After automatically identifying the position of the diaphragm apex in the fluoroscopic images using fully convolutional neural network model, the correlation model between the body surface and the diaphragm apex motion was established with random forest method to predict the trajectory of the diaphragm apex in real time based on the body surface motion information. The accuracy of the established model was assessed by comparing the automatically tracked diaphragm apex position with the position manually drawn by the radiation oncologist. Results The mean correlation coefficient between body surface regions of interest and diaphragm motion in the 3 patients reached a maximum of (0.73±0.01) mm in the anterior-posterior direction, and a maximum of (0.88±0.01) mm in the superior-inferior direction. The mean absolute error and root mean square error between the predicted results of the automated tracking model and the manually delineated position were (3.09±0.79) mm and (3.89±0.89) mm in superior-inferior direction, (1.42±0.43) mm and (1.78±0.46) mm in anterior-posterior direction. Conclusion The body surface respiratory motion is associated with the internal diaphragm motion. The diaphragm apex motion can be tracked in real time using the optical surface motion information during radiotherapy, and the technique can be used for real time and non-invasive motion management of tumor near the diaphragm during radiotherapy of thoracic and abdominal tumors.

相似文献/References:

[1]王弈,李传富.人工智能方法在医学图像处理中的研究新进展[J].中国医学物理学杂志,2013,30(03):4138.[doi:10.3969/j.issn.1005-202X.2013.03.013]
[2]王亚,李永欣,黄文华.人类脑计划的研究进展[J].中国医学物理学杂志,2016,33(2):109.[doi:10.3969/j.issn.1005-202X.2016.02.001]
 [J].Chinese Journal of Medical Physics,2016,33(12):109.[doi:10.3969/j.issn.1005-202X.2016.02.001]
[3]祁红琳,胡先玲,李传明,等. 基于MRI纹理特征的早期肝癌术后复发预测[J].中国医学物理学杂志,2017,34(9):908.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.010]
 [J].Chinese Journal of Medical Physics,2017,34(12):908.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.010]
[4]纪春阳,徐秀林,王燕. 深度神经网络技术在肿瘤细胞识别中的应用[J].中国医学物理学杂志,2019,36(9):1113.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.022]
 JI Chunyang,XU Xiulin,WANG Yan. Application of deep neural network in tumor cell recognition[J].Chinese Journal of Medical Physics,2019,36(12):1113.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.022]
[5]王沛沛,李金凯,李彩虹,等.基于人工智能技术的危及器官自动勾画在胸部肿瘤中的应用[J].中国医学物理学杂志,2019,36(11):1346.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.019]
 WANG Peipei,LI Jinkai,LI Caihong,et al.Application of automatic organs-at-risk segmentation based on artificial intelligence technology in thoracic tumors[J].Chinese Journal of Medical Physics,2019,36(12):1346.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.019]
[6]莫梓华,高红霞,黄飚.人工智能在中枢神经系统疾病影像诊断中的应用进展[J].中国医学物理学杂志,2020,37(6):792.[doi:DOI:10.3969/j.issn.1005-202X.2020.06.025]
 MO Zihua,GAO Hongxia,et al.Application of artificial intelligence in imaging diagnosis of central nervous system diseases: a review[J].Chinese Journal of Medical Physics,2020,37(12):792.[doi:DOI:10.3969/j.issn.1005-202X.2020.06.025]
[7]刘思远,张丽军,刘雷.人工智能在抗击新型冠状病毒肺炎疫情中的应用[J].中国医学物理学杂志,2020,37(8):1076.[doi:DOI:10.3969/j.issn.1005-202X.2020.08.026]
 LIU Siyuan,ZHANG Lijun,LIU Lei.Application of artificial intelligence in fighting against COVID-19 pandemic[J].Chinese Journal of Medical Physics,2020,37(12):1076.[doi:DOI:10.3969/j.issn.1005-202X.2020.08.026]
[8]陈思佳,石丽婉,林勤.基于知识的放射治疗技术研究[J].中国医学物理学杂志,2020,37(11):1350.[doi:DOI:10.3969/j.issn.1005-202X.2020.11.002]
 CHEN Sijia,SHI Liwan,LIN Qin.Research on knowledge-based radiation therapy[J].Chinese Journal of Medical Physics,2020,37(12):1350.[doi:DOI:10.3969/j.issn.1005-202X.2020.11.002]
[9]陈子印,白艳春,徐巍,等.人工智能云技术在乳腺癌患者心脏亚结构自动勾画中的应用[J].中国医学物理学杂志,2020,37(12):1599.[doi:DOI:10.3969/j.issn.1005-202X.2020.12.024]
 CHEN Ziyin,BAI Yanchun,XU Wei,et al.Application of artificial intelligence cloud technology in auto-segmentation of cardiac substructure of breast cancer patients[J].Chinese Journal of Medical Physics,2020,37(12):1599.[doi:DOI:10.3969/j.issn.1005-202X.2020.12.024]
[10]邓灵波,周雯,赵双全,等.人工智能辅助诊断系统在新型冠状病毒肺炎诊断中的初步应用[J].中国医学物理学杂志,2020,37(12):1604.[doi:DOI:10.3969/j.issn.1005-202X.2020.12.025]
 DENG Lingbo,ZHOU Wen,ZHAO Shuangquan,et al.Preliminary application of AI diagnosis system in the diagnosis of the novel coronavirus infected pneumonia[J].Chinese Journal of Medical Physics,2020,37(12):1604.[doi:DOI:10.3969/j.issn.1005-202X.2020.12.025]

备注/Memo

备注/Memo:
【收稿日期】2022-07-08 【基金项目】广州市科技计划项目(202102010264);广东省中医院中医药科学技术研究专项(ZY2022YL07) 【作者简介】谭翔,技师,主要从事肿瘤放射治疗工作,E-mail: 1009476063@qq.com 【通信作者】王学涛,主任技师,主要从事肿瘤放射物理工作,E-mail: wangxuetao0625@126.com
更新日期/Last Update: 2022-12-23