[1]王瑞,刘志强,齐崇,等.基于3D深度残差网络和多模态MRI的脑胶质瘤自动分级[J].中国医学物理学杂志,2022,39(10):1236-1243.[doi:DOI:10.3969/j.issn.1005-202X.2022.10.010]
 WANG Rui,LIU Zhiqiang,QI Chong,et al.Automated glioma grading based on 3D deep residual network and multimodal MRI[J].Chinese Journal of Medical Physics,2022,39(10):1236-1243.[doi:DOI:10.3969/j.issn.1005-202X.2022.10.010]
点击复制

基于3D深度残差网络和多模态MRI的脑胶质瘤自动分级()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
39卷
期数:
2022年第10期
页码:
1236-1243
栏目:
医学影像物理
出版日期:
2022-11-02

文章信息/Info

Title:
Automated glioma grading based on 3D deep residual network and multimodal MRI
文章编号:
1005-202X(2022)10-1236-08
作者:
王瑞1刘志强2齐崇1孟蓝熙1李少武1
1.北京市神经外科研究所/首都医科大学附属北京天坛医院, 北京 100070; 2.国家癌症中心/国家肿瘤临床医学研究中心/中国医学科学院北京协和医学院肿瘤医院放疗科, 北京 100021
Author(s):
WANG Rui1 LIU Zhiqiang2 QI Chong1 MENG Lanxi1 LI Shaowu1
1. Beijing Neurosurgical Institute/Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China 2. National Cancer Center/National Clinical Research Center for Cancer/Department of Radiotherapy, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
关键词:
脑胶质瘤自动分级3D深度残差网络多模态MRI
Keywords:
Keywords: glioma automated grading 3D deep residual network multimodal MRI
分类号:
R318;R739.4
DOI:
DOI:10.3969/j.issn.1005-202X.2022.10.010
文献标志码:
A
摘要:
目的:利用3D深度残差网络和多模态MRI实现对脑胶质瘤的自动分级。方法:利用BraTS2020公共数据集的293例高级别胶质瘤(HGG)和76例低级别胶质瘤(LGG)的多模态MRI数据训练和测试3D深度残差卷积网络模型。多模态MRI图像经过3D剪裁、重采样和归一化的预处理,随机分组为训练(64%)、验证(16%)和测试(20%)样本,将预处理后的多模态MRI图像和分级标注输入到网络模型进行训练、验证和测试。利用准确率(ACC)和受试者工作特征(ROC)曲线下面积(AUC)评价分级结果。结果:在59例(48例HGG和11例LGG)验证数据集上,ACC和AUC分别为0.93和0.97,在75例(62例HGG和13例LGG)测试数据集上,ACC和AUC分别为0.89和0.93。结论:3D深度残差网络在多模态MRI数据集上获得了较好的脑胶质瘤自动分级结果,可以为确定治疗方案和预测预后方面提供重要参考。
Abstract:
Abstract: Objective To achieve automated glioma grading using 3D deep residual network and multimodal MRI. Methods The multimodal MRI data of 293 high grade gliomas (HGG) and 76 low grade gliomas (LGG) from the BraTS2020 public dataset were used to train and test the 3D deep residual network. After being preprocessed by 3D clipping, resampling and normalization, the multimodal MRI images and grade labeling were input into the network model for training (64%), validation (16%) and testing (20%). The glioma grading performance of the 3D deep residual network was evaluated in terms of accuracy (ACC), area under the receiver operating characteristic (ROC) curve (AUC). Results The ACC and AUC were 0.93 and 0.97 in the 59 cases from validation dataset (48 cases of HGG and 11 cases of LGG), and 0.89 and 0.93 in the 75 cases from testing dataset (62 cases of HGG and 13 cases of LGG). Conclusion The 3D deep residual network has a good performance in automated glioma grading on multi-modal MRI dataset, and it can provide significant reference for treatment option determination and prognosis prediction.

相似文献/References:

[1]周 钢,田 野,陆雪官,等.同步加量技术应用于脑胶质瘤术后调强放疗的剂量学研究[J].中国医学物理学杂志,2014,31(02):4727.[doi:10.3969/j.issn.1005-202X.2014.02.002]
[2]戴红娅,黄江华,陈露,等. RapidArc和IMRT在脑胶质瘤术后放疗中保护海马的剂量学比较[J].中国医学物理学杂志,2018,35(12):1404.[doi:DOI:10.3969/j.issn.1005-202X.2018.12.007]
 DAI Hongya,HUANG Jianghua,CHEN Lu,et al. Dosimetric comparison of RapidArc and IMRT in hippocampus sparing during postoperative radiotherapy for glioma[J].Chinese Journal of Medical Physics,2018,35(10):1404.[doi:DOI:10.3969/j.issn.1005-202X.2018.12.007]
[3]郭飞宝.高分级脑胶质瘤4种同步加量调强放射治疗的剂量学分析[J].中国医学物理学杂志,2019,36(12):1396.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.006]
 GUO Feibao.Dosimetric analysis of 4 types of simultaneous integrated boost radiotherapy for high-grade glioma[J].Chinese Journal of Medical Physics,2019,36(10):1396.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.006]
[4]段欢欢,李书舟,曹瑛,等.基于深度学习方法预测IMRT计划射野的γ通过率[J].中国医学物理学杂志,2021,38(6):677.[doi:DOI:10.3969/j.issn.1005-202X.2021.06.004]
 . School of Nuclear Science and Technology,University of South China,Hengyang 00,et al.Predicting gamma passing rates for intensity-modulated radiotherapy fields based on deep learning method[J].Chinese Journal of Medical Physics,2021,38(10):677.[doi:DOI:10.3969/j.issn.1005-202X.2021.06.004]
[5]黄唯,徐中标,邓官华,等.MRI拉莫尔频率范围内人体脑胶质瘤组织的介电特性[J].中国医学物理学杂志,2021,38(12):1538.[doi:DOI:10.3969/j.issn.1005-202X.2021.12.015]
 HUANG Wei,XU Zhongbiao,DENG Guanhua,et al.Dielectric properties of human glioma tissue at Larmor frequencies in MRI[J].Chinese Journal of Medical Physics,2021,38(10):1538.[doi:DOI:10.3969/j.issn.1005-202X.2021.12.015]
[6]袁红杰,杨艳,张东,等.基于多监督注意力机制神经网络的脑胶质瘤循环肿瘤细胞分割算法[J].中国医学物理学杂志,2022,39(7):828.[doi:DOI:10.3969/j.issn.1005-202X.2022.07.007]
 YUAN Hongjie,YANG Yan,ZHANG Dong,et al.Neural network-based multi-level supervision and attention mechanism algorithm for brain glioma CTC segmentation[J].Chinese Journal of Medical Physics,2022,39(10):828.[doi:DOI:10.3969/j.issn.1005-202X.2022.07.007]
[7]计亚荣,王瑜,肖洪兵,等.基于TensorMixup的脑胶质瘤全自动分割[J].中国医学物理学杂志,2022,39(12):1502.[doi:DOI:10.3969/j.issn.1005-202X.2022.12.008]
 JI Yarong,WANG Yu,XIAO Hongbing,et al.Fully automated glioma segmentation based on TensorMixup[J].Chinese Journal of Medical Physics,2022,39(10):1502.[doi:DOI:10.3969/j.issn.1005-202X.2022.12.008]
[8]刘一蓉,张恺,吴剑.脑胶质瘤切除术中辅助检测与精准操作技术概况[J].中国医学物理学杂志,2023,40(2):163.[doi:DOI:10.3969/j.issn.1005-202X.2023.02.006]
 LIU Yirong,ZHANG Kai,et al.Introperative auxiliary detection and precise operation techniques in glioma resection[J].Chinese Journal of Medical Physics,2023,40(10):163.[doi:DOI:10.3969/j.issn.1005-202X.2023.02.006]
[9]游慧霞,张怀岺.深度学习和影像组学在脑胶质瘤诊疗中的研究进展[J].中国医学物理学杂志,2023,40(12):1502.[doi:DOI:10.3969/j.issn.1005-202X.2023.12.008]
 YOU Huixia,ZHANG Huailing.Deep learning and radiomics in diagnosis and treatment of glioma: a review[J].Chinese Journal of Medical Physics,2023,40(10):1502.[doi:DOI:10.3969/j.issn.1005-202X.2023.12.008]

备注/Memo

备注/Memo:
【收稿日期】2022-05-26 【基金项目】中国医学科学院医学与健康科技创新工程项目(2022-I2M-C&T-B-075);国家自然科学基金(11905295, 81901115);中国癌症基金会“北京希望马拉松”专项基金(LC2021B01) 【作者简介】王瑞,博士,讲师,主要研究方向:多模态磁共振影像,E-mail: ruiwang0903@sina.com 【通信作者】刘志强,博士,副研究员,主要研究方向:人工智能在肿瘤放射治疗中的应用,E-mail: zhiqiang.liu@cicams.ac.cn;李少武,博士,主任医师,主要研究方向:功能磁共振影像,E-mail: lys5@sina.com
更新日期/Last Update: 2022-10-27