[1]余陈佑,程云章.基于多域脑电参数分析的麻醉深度评估[J].中国医学物理学杂志,2022,39(7):907-912.[doi:DOI:10.3969/j.issn.1005-202X.2022.07.020]
 YU Chenyou,CHENG Yunzhang.Estimating depth of anesthesia based on analysis of multi-domain EEG parameters[J].Chinese Journal of Medical Physics,2022,39(7):907-912.[doi:DOI:10.3969/j.issn.1005-202X.2022.07.020]
点击复制

基于多域脑电参数分析的麻醉深度评估()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
39卷
期数:
2022年第7期
页码:
907-912
栏目:
医学信号处理与医学仪器
出版日期:
2022-07-15

文章信息/Info

Title:
Estimating depth of anesthesia based on analysis of multi-domain EEG parameters
文章编号:
1005-202X(2022)07-0907-06
作者:
余陈佑程云章
上海理工大学健康科学与工程学院, 上海 200093
Author(s):
YU Chenyou CHENG Yunzhang
School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
关键词:
麻醉深度脑电信号随机森林
Keywords:
Keywords: depth of anesthesia electroencephalogram signal random forest
分类号:
R318
DOI:
DOI:10.3969/j.issn.1005-202X.2022.07.020
文献标志码:
A
摘要:
提出一种结合随机森林模型的输出和脑电参数共同评估麻醉深度的方法,以提高评估麻醉深度的可靠性。首先通过滤波方式处理脑电信号,然后把信号分割成等长的多段,从每段中提取非线性域、频域、时域的10种参数,得到脑电参数-BIS值数据集;然后建立评估麻醉深度的随机森林回归模型,并在这些脑电参数中筛选出用于辅助模型评估的参数;最后在测试集上验证模型和参数的效果。该模型在测试集上的估计值与真实值之间存在很好的一致性和相关性(Pearson相关性=0.975),筛选出的参数在测试集上也达到了82.3%的总准确率,表明该方法在评估麻醉深度方面具有较好的应用价值。
Abstract:
Abstract: A method that combines the output of random forest model and EEG parameters is proposed to estimate the depth of anesthesia, thereby improving the reliability of estimating the depth of anesthesia. The EEG signal is divided into multiple segments of equal length after filtering. Ten parameters in the nonlinear domain, frequency domain, and time domain are extracted from each EEG signal segment for constituting the EEG parameter-BIS value data set. Then, a random forest regression model for estimating the depth of anesthesia is established, and the parameter used to assist in the model evaluation is screened out of these EEG parameters. Finally, the performances of the model and the selected parameter in the estimation of the depth of anesthesia are verified on the test set. There are good consistency and correlation between the estimated value on the test set and the true value (Pearson correlation=0.975), and the selected parameter can also achieve a total accuracy of 82.3% on the test set, which shows that the proposed method has a high application value in estimating the depth of anesthesia.

相似文献/References:

[1]王怡玲,覃玉荣,郭湛超,等.基于不同闪烁频率光刺激的脑电压变化研究[J].中国医学物理学杂志,2014,31(05):5184.[doi:10.3969/j.issn.1005-202X.2014.05.019]
[2]董亮,张兴安,熊冬生,等.基于TCI麻醉深度智能控制系统的设计[J].中国医学物理学杂志,2013,30(02):4052.[doi:10.3969/j.issn.1005-202X.2013.02.021]
[3]杨建平,张德乾,吕敬祥,等.操作发起过程多脑区协作的脑电谱熵特征[J].中国医学物理学杂志,2016,33(1):44.[doi:DOI:10.3969/j.issn.1005-202X.2016.01.010]
 [J].Chinese Journal of Medical Physics,2016,33(7):44.[doi:DOI:10.3969/j.issn.1005-202X.2016.01.010]
[4]崔招焕,等.大鼠癫痫脑电信号采集[J].中国医学物理学杂志,2016,33(2):118.[doi:10.3969/j.issn.1005-202X.2016.02.003]
 [J].Chinese Journal of Medical Physics,2016,33(7):118.[doi:10.3969/j.issn.1005-202X.2016.02.003]
[5]刘岩,李幼军,陈萌. 基于固有模态分解和深度学习的抑郁症脑电信号分类分析[J].中国医学物理学杂志,2017,34(9):963.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.021]
 [J].Chinese Journal of Medical Physics,2017,34(7):963.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.021]
[6]丁正敏,熊冬生,陈宇珂,等. 基于脑电样本熵和小波熵的麻醉深度监测[J].中国医学物理学杂志,2018,35(2):243.[doi:DOI:10.3969/j.issn.1005-202X.2018.02.024]
 DING Zhengmin,XIONG Dongsheng,CHEN Yuke,et al. Sample entropy and wavelet entropy of electroencephalogram for monitoring the depth of anesthesia[J].Chinese Journal of Medical Physics,2018,35(7):243.[doi:DOI:10.3969/j.issn.1005-202X.2018.02.024]
[7]马玉良,刘卫星,张淞杰,等.基于ABC-SVM的运动想象脑电信号模式分类[J].中国医学物理学杂志,2018,35(9):1056.[doi:10.3969/j.issn.1005-202X.2018.09.012]
 MAYuliang,LIUWeixing,ZHANG Songjie,et al.Pattern classification of motor imagery EEG signals based on ABC-SVM algorithm[J].Chinese Journal of Medical Physics,2018,35(7):1056.[doi:10.3969/j.issn.1005-202X.2018.09.012]
[8]刘畅,覃玉荣,时文健.视听觉刺激下大脑头皮电位空间变化特性[J].中国医学物理学杂志,2018,35(10):1225.[doi:DOI:10.3969/j.issn.1005-202X.2018.010.023]
 LIU Chang,QIN Yurong,SHI Wenjian. Spatial variation characteristics of scalp potentials under audiovisual stimuli[J].Chinese Journal of Medical Physics,2018,35(7):1225.[doi:DOI:10.3969/j.issn.1005-202X.2018.010.023]
[9]周杰,杨国雨,徐涛. 基于空间频率与时间序列信息的多类运动想象脑电分类[J].中国医学物理学杂志,2019,36(1):81.[doi:DOI:10.3969/j.issn.1005-202X.2019.01.016]
 ZHOU Jie,YANG Guoyu,XU Tao. Classification of multi-class motor imagery EEG data based on spatial frequency and time-series information[J].Chinese Journal of Medical Physics,2019,36(7):81.[doi:DOI:10.3969/j.issn.1005-202X.2019.01.016]
[10]苏克阳,曾景阳,谢文钦,等. 近似熵在脑电监测麻醉深度中的应用[J].中国医学物理学杂志,2019,36(1):117.[doi:DOI:10.3969/j.issn.1005-202X.2019.01.023]
 SU Keyang,ZENG Jingyang,XIE Wenqin,et al. Application of EEG approximate entropy in monitoring the depth of anesthesia[J].Chinese Journal of Medical Physics,2019,36(7):117.[doi:DOI:10.3969/j.issn.1005-202X.2019.01.023]
[11]顾家军,叶继伦.麻醉深度监测中脑电信号特征提取方法[J].中国医学物理学杂志,2016,33(2):157.[doi:10.3969/j.issn.1005-202X.2016.02.010]
 [J].Chinese Journal of Medical Physics,2016,33(7):157.[doi:10.3969/j.issn.1005-202X.2016.02.010]
[12]顾家军,叶继伦,崔钰涵,等.BP网络在麻醉深度监测算法上的应用[J].中国医学物理学杂志,2021,38(8):985.[doi:DOI:10.3969/j.issn.1005-202X.2021.08.013]
 GU Jiajun,YE Jilun,CUI Yuhan,et al.Application of back-propagation network in algorithm for monitoring depth of anesthesia[J].Chinese Journal of Medical Physics,2021,38(7):985.[doi:DOI:10.3969/j.issn.1005-202X.2021.08.013]
[13]汤卫雄,程云章,张天逸,等.基于脑电非线性特征和AdaBoost算法的诱导期麻醉深度检测[J].中国医学物理学杂志,2023,40(5):616.[doi:DOI:10.3969/j.issn.1005-202X.2023.05.015]
 TANG Weixiong,CHENG Yunzhang,et al.Monitoring depth of anesthesia during induction using EEG nonlinear characteristics combined with AdaBoost algorithm[J].Chinese Journal of Medical Physics,2023,40(7):616.[doi:DOI:10.3969/j.issn.1005-202X.2023.05.015]

备注/Memo

备注/Memo:
【收稿日期】2022-01-10 【基金项目】上海工程技术研究中心科研项目(18DZ2250900) 【作者简介】余陈佑,硕士,研究方向:脑电信号与麻醉深度监测,E-mail: 2810957017@qq.com 【通信作者】程云章,教授,研究方向:介入医学工程与智能医学工程,E-mail: cyz2008@usst.edu.cn
更新日期/Last Update: 2022-07-15