[1]唐智贤,王一淼,周靓怡,等.人工智能技术在肺部影像辅助诊断中的应用进展[J].中国医学物理学杂志,2022,39(5):655-660.[doi:DOI:10.3969/j.issn.1005-202X.2022.05.022]
 TANG Zhixian,WANG Yimiao,ZHOU Liangyi,et al.Artificial intelligence technologies in lung imaging assisted diagnosis: a review[J].Chinese Journal of Medical Physics,2022,39(5):655-660.[doi:DOI:10.3969/j.issn.1005-202X.2022.05.022]
点击复制

人工智能技术在肺部影像辅助诊断中的应用进展()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
39卷
期数:
2022年第5期
页码:
655-660
栏目:
医学人工智能
出版日期:
2022-05-27

文章信息/Info

Title:
Artificial intelligence technologies in lung imaging assisted diagnosis: a review
文章编号:
1005-202X(2022)05-0655-06
作者:
唐智贤1王一淼1周靓怡1陆心怡1梁凯轶2
1.上海健康医学院医学影像学院, 上海 201318; 2.上海健康医学院附属嘉定区中心医院放射科, 上海 201800
Author(s):
TANG Zhixian1 WANG Yimiao1 ZHOU Liangyi1 LU Xinyi1 LIANG Kaiyi2
1. College of Medical Imaging, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China 2. Department of Radiology, Jiading District Central Hospital Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai 201800, China
关键词:
人工智能肺部疾病多疾病联合诊断胸片计算机断层扫描
Keywords:
Keywords: artificial intelligence lung disease multi-disease joint diagnosis chest radiograph computed tomography
分类号:
R318;R563
DOI:
DOI:10.3969/j.issn.1005-202X.2022.05.022
文献标志码:
A
摘要:
肺部影像不仅表现复杂,而且数据量增长迅速,多种因素导致影像科医生任务繁重。人工智能辅助诊断技术的出现恰逢其时,当前的智能诊断算法能够实现肺部病灶检出、分割和性质判断等多种应用模式,不仅有效提升医生诊断的效率、更有望推动分级诊疗、优化医疗资源配置。基于人工智能的肺部影像诊断技术已经从单一特定的疾病诊断逐渐发展到多疾病联合诊断。本文综述人工智能辅助诊断技术的发展背景,分析基于人工智能的肺部疾病诊断的研究现状,最后总结相关算法的优缺点和未来的发展方向。
Abstract:
Abstract: Due to various factors such as complicated lung imaging and rapidly growing amount of data, the task for imaging technicians is arduous. The emergence of artificial intelligence assisted diagnosis technology comes just in time. The current intelligent diagnosis algorithms can realize multiple applications such as detection, segmentation and nature diagnosis of lung lesions, which not only effectively improves the efficiency of doctor diagnosis, but also is expected to promote hierarchical treatment and optimize the allocation of medical resources. Artificial intelligence based lung imaging diagnosis technology has gradually developed from single specific disease diagnosis to multi-disease joint diagnosis. Herein the development background of artificial intelligence assisted diagnosis technology is reviewed, and the research status of pulmonary disease diagnosis based on artificial intelligence is analyzed, and finally the advantages and disadvantages of relevant algorithms are summarized and the future development direction is discussed.

相似文献/References:

[1]王弈,李传富.人工智能方法在医学图像处理中的研究新进展[J].中国医学物理学杂志,2013,30(03):4138.[doi:10.3969/j.issn.1005-202X.2013.03.013]
[2]王亚,李永欣,黄文华.人类脑计划的研究进展[J].中国医学物理学杂志,2016,33(2):109.[doi:10.3969/j.issn.1005-202X.2016.02.001]
 [J].Chinese Journal of Medical Physics,2016,33(5):109.[doi:10.3969/j.issn.1005-202X.2016.02.001]
[3]祁红琳,胡先玲,李传明,等. 基于MRI纹理特征的早期肝癌术后复发预测[J].中国医学物理学杂志,2017,34(9):908.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.010]
 [J].Chinese Journal of Medical Physics,2017,34(5):908.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.010]
[4]纪春阳,徐秀林,王燕. 深度神经网络技术在肿瘤细胞识别中的应用[J].中国医学物理学杂志,2019,36(9):1113.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.022]
 JI Chunyang,XU Xiulin,WANG Yan. Application of deep neural network in tumor cell recognition[J].Chinese Journal of Medical Physics,2019,36(5):1113.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.022]
[5]王沛沛,李金凯,李彩虹,等.基于人工智能技术的危及器官自动勾画在胸部肿瘤中的应用[J].中国医学物理学杂志,2019,36(11):1346.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.019]
 WANG Peipei,LI Jinkai,LI Caihong,et al.Application of automatic organs-at-risk segmentation based on artificial intelligence technology in thoracic tumors[J].Chinese Journal of Medical Physics,2019,36(5):1346.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.019]
[6]莫梓华,高红霞,黄飚.人工智能在中枢神经系统疾病影像诊断中的应用进展[J].中国医学物理学杂志,2020,37(6):792.[doi:DOI:10.3969/j.issn.1005-202X.2020.06.025]
 MO Zihua,GAO Hongxia,et al.Application of artificial intelligence in imaging diagnosis of central nervous system diseases: a review[J].Chinese Journal of Medical Physics,2020,37(5):792.[doi:DOI:10.3969/j.issn.1005-202X.2020.06.025]
[7]刘思远,张丽军,刘雷.人工智能在抗击新型冠状病毒肺炎疫情中的应用[J].中国医学物理学杂志,2020,37(8):1076.[doi:DOI:10.3969/j.issn.1005-202X.2020.08.026]
 LIU Siyuan,ZHANG Lijun,LIU Lei.Application of artificial intelligence in fighting against COVID-19 pandemic[J].Chinese Journal of Medical Physics,2020,37(5):1076.[doi:DOI:10.3969/j.issn.1005-202X.2020.08.026]
[8]陈思佳,石丽婉,林勤.基于知识的放射治疗技术研究[J].中国医学物理学杂志,2020,37(11):1350.[doi:DOI:10.3969/j.issn.1005-202X.2020.11.002]
 CHEN Sijia,SHI Liwan,LIN Qin.Research on knowledge-based radiation therapy[J].Chinese Journal of Medical Physics,2020,37(5):1350.[doi:DOI:10.3969/j.issn.1005-202X.2020.11.002]
[9]陈子印,白艳春,徐巍,等.人工智能云技术在乳腺癌患者心脏亚结构自动勾画中的应用[J].中国医学物理学杂志,2020,37(12):1599.[doi:DOI:10.3969/j.issn.1005-202X.2020.12.024]
 CHEN Ziyin,BAI Yanchun,XU Wei,et al.Application of artificial intelligence cloud technology in auto-segmentation of cardiac substructure of breast cancer patients[J].Chinese Journal of Medical Physics,2020,37(5):1599.[doi:DOI:10.3969/j.issn.1005-202X.2020.12.024]
[10]邓灵波,周雯,赵双全,等.人工智能辅助诊断系统在新型冠状病毒肺炎诊断中的初步应用[J].中国医学物理学杂志,2020,37(12):1604.[doi:DOI:10.3969/j.issn.1005-202X.2020.12.025]
 DENG Lingbo,ZHOU Wen,ZHAO Shuangquan,et al.Preliminary application of AI diagnosis system in the diagnosis of the novel coronavirus infected pneumonia[J].Chinese Journal of Medical Physics,2020,37(5):1604.[doi:DOI:10.3969/j.issn.1005-202X.2020.12.025]

备注/Memo

备注/Memo:
【收稿日期】2021-12-17 【基金项目】上海市青年科技英才扬帆计划(21YF1418600);上海市卫健委科研项目(201940315) 【作者简介】唐智贤,讲师,研究方向:医学人工智能,E-mail: tangzx@sumhs.edu.cn 【通信作者】梁凯轶,副主任医师,研究方向:胸部影像学诊断及医学人工智能,Email: c78402@163.com
更新日期/Last Update: 2022-05-27