[1]张斌,薛彩强,林晓强,等.深度学习在脑胶质瘤影像学的研究进展[J].中国医学物理学杂志,2021,38(8):1048-1052.[doi:DOI:10.3969/j.issn.1005-202X.2021.08.025]
 ZHANG Bin,XUE Caiqiang,LIN Xiaoqiang,et al.Advances in deep learning for brain glioma imaging[J].Chinese Journal of Medical Physics,2021,38(8):1048-1052.[doi:DOI:10.3969/j.issn.1005-202X.2021.08.025]
点击复制

深度学习在脑胶质瘤影像学的研究进展()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
38卷
期数:
2021年第8期
页码:
1048-1052
栏目:
医学人工智能
出版日期:
2021-08-02

文章信息/Info

Title:
Advances in deep learning for brain glioma imaging
文章编号:
1005-202X(2021)08-1048-05
作者:
张斌薛彩强林晓强景梦园邓靓娜韩涛周俊林
兰州大学第二医院放射科/兰州大学第二临床医学院/甘肃省医学影像重点实验室, 甘肃 兰州 730030
Author(s):
ZHANG Bin XUE Caiqiang LIN Xiaoqiang JING Mengyuan DENG Liangna HAN Tao ZHOU Junlin
Department of Radiology, Lanzhou University Second Hospital/the Second Clinical Medical School, Lanzhou University/Key Laboratory of Medical Imaging of Gansu Province, Lanzhou 730030, China
关键词:
深度学习胶质瘤影像学综述
Keywords:
Keywords: deep learning glioma imaging review
分类号:
R318
DOI:
DOI:10.3969/j.issn.1005-202X.2021.08.025
文献标志码:
A
摘要:
深度学习是基于多层神经网络计算模型发现数据内复杂特征的一种深度网络,较多应用于医学图像的分割与分类中,在各类脑胶质瘤的研究中也有许多成果。本文就深度学习在脑胶质瘤的准确分割定位、组织遗传学特征预测及预后评估等方面展开综述,总结深度学习在脑胶质瘤影像图像分割与分类的研究进展,从而为胶质瘤患者的精准诊断、个体化治疗提供新思路。
Abstract:
Abstract: Deep learning is a kind of deep network that can discover the inherent complex features of data based on a multi-layer neural network computing model. It is mostly used in the segmentation and classification of medical images, and it also makes lots of achievements in the research of various types of gliomas. Herein the applications of deep learning in the accurate segmentation and positioning, prediction of tissue genetic features, and prognostic evaluation of brain gliomas are reviewed, and the recent advances in deep learning for image segmentation and classification of gliomas are summarized, so as to provide new ideas for the accurate diagnosis and individualized treatment of glioma patients.

相似文献/References:

[1]陶源,王佳飞,杜俊龙,等.基于卷积神经网络的细胞识别[J].中国医学物理学杂志,2017,34(1):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
 [J].Chinese Journal of Medical Physics,2017,34(8):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
[2]谭泓叶,张晓红,张海黔.银纳米粒子对乏氧胶质瘤细胞的影响[J].中国医学物理学杂志,2017,34(1):89.[doi:10.3969/j.issn.1005-202X.2017.01.018]
 [J].Chinese Journal of Medical Physics,2017,34(8):89.[doi:10.3969/j.issn.1005-202X.2017.01.018]
[3]门阔,戴建荣. 利用深度反卷积神经网络自动勾画放疗危及器官[J].中国医学物理学杂志,2018,35(3):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
 MEN Kuo,DAI Jianrong. Automatic segmentation of organs at risk in radiotherapy using deep deconvolutional neural network[J].Chinese Journal of Medical Physics,2018,35(8):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
[4]张国前,张书旭,王锐濠,等. Auto-planning在脑胶质瘤非共面容积调强放疗计划中的应用[J].中国医学物理学杂志,2018,35(5):514.[doi:DOI:10.3969/j.issn.1005-202X.2018.05.004]
 ZHANG Guoqian,ZHANG Shuxu,WANG Ruihao,et al. Application research on Auto-planning in non-coplanar VMAT plan for brain gliomas[J].Chinese Journal of Medical Physics,2018,35(8):514.[doi:DOI:10.3969/j.issn.1005-202X.2018.05.004]
[5]邓金城,彭应林,刘常春,等. 深度卷积神经网络在放射治疗计划图像分割中的应用[J].中国医学物理学杂志,2018,35(6):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
 DENG Jincheng,PENG Yinglin,LIU Changchun,et al. Application of deep convolution neural network in radiotherapy planning image segmentation[J].Chinese Journal of Medical Physics,2018,35(8):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
[6]查雪帆,杨丰,吴俣南,等. 结合迁移学习与深度卷积网络的心电分类研究[J].中国医学物理学杂志,2018,35(11):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
 ZHA Xuefan,YANG Feng,WU Yunan,et al. ECG classification based on transfer learning and deep convolution neural network[J].Chinese Journal of Medical Physics,2018,35(8):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
[7]宫进昌,赵尚义,王远军. 基于深度学习的医学图像分割研究进展[J].中国医学物理学杂志,2019,36(4):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
 GONG Jinchang,ZHAO Shangyi,WANG Yuanjun.Research progress on deep learning-based medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(8):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
[8]安莹,黄能军,杨荣,等. 基于深度学习的心血管疾病风险预测模型[J].中国医学物理学杂志,2019,36(9):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
 AN Ying,HUANG Nengjun,YANG Rong,et al. Deep learning-based model for risk prediction of cardiovascular diseases[J].Chinese Journal of Medical Physics,2019,36(8):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
[9]徐航,随力,张靖雯,等.卷积神经网络在医学图像分割中的研究进展[J].中国医学物理学杂志,2019,36(11):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
 XU Hang,SUI Li,ZHANG Jingwen,et al.Progress on convolutional neural network in medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(8):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
[10]张富利,崔德琪,王秋生,等.基于深度学习和图谱库方法自动勾画肿瘤放疗中危及器官的比较[J].中国医学物理学杂志,2019,36(12):1486.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.024]
 ZHANG Fuli,CUI Deqi,WANG Qiusheng,et al.Comparative study of deep learning- versus Atlas-based auto-segmentation of organs-at-risk in tumor radiotherapy[J].Chinese Journal of Medical Physics,2019,36(8):1486.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.024]

备注/Memo

备注/Memo:
【收稿日期】2021-05-06 【基金项目】国家自然科学基金(82071872,81772006);兰州大学第二医院“萃英科技创新计划”应用基础研究项目(CY2017-MS03) 【作者简介】张斌,硕士研究生,研究方向:神经影像学,E-mail: 90547- 3575@qq.com 【通信作者】周俊林,博士,主任医师,教授,研究方向:神经影像学,E-mail:lzuzjl601@163.com
更新日期/Last Update: 2021-07-31