[1]陈子印,白艳春,徐巍,等.人工智能云技术在乳腺癌患者心脏亚结构自动勾画中的应用[J].中国医学物理学杂志,2020,37(12):1599-1603.[doi:DOI:10.3969/j.issn.1005-202X.2020.12.024]
 CHEN Ziyin,BAI Yanchun,XU Wei,et al.Application of artificial intelligence cloud technology in auto-segmentation of cardiac substructure of breast cancer patients[J].Chinese Journal of Medical Physics,2020,37(12):1599-1603.[doi:DOI:10.3969/j.issn.1005-202X.2020.12.024]
点击复制

人工智能云技术在乳腺癌患者心脏亚结构自动勾画中的应用()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
37
期数:
2020年第12期
页码:
1599-1603
栏目:
医学人工智能
出版日期:
2020-12-30

文章信息/Info

Title:
Application of artificial intelligence cloud technology in auto-segmentation of cardiac substructure of breast cancer patients
文章编号:
1005-202X(2020)12-1599-05
作者:
陈子印1白艳春1徐巍2王定宇2徐丽丽1赵秋爽1朱森华3汪洋4刘广忠2
1.哈尔滨医科大学附属第一医院肿瘤放射治疗室, 黑龙江 哈尔滨 150001; 2.哈尔滨医科大学附属第一医院心内五病房, 黑龙江 哈尔滨 150001; 3.北京连心医疗科技有限公司, 北京 100083; 4.哈尔滨市胸科医院加速器室, 黑龙江 哈尔滨 150056
Author(s):
CHEN Ziyin1 BAI Yanchun1 XU Wei2 WANG Dingyu2 XU Lili1 ZHAO Qiushuang1 ZHU Senhua3 WANG Yang4 LIU Guangzhong2
1. Department of Oncology Radiotherapy, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China 2. The Fifth Cardiology Department, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China 3 Lingkingmed Science and Technology Company, Beijing 100083, China 4. Accelerator Room, Harbin Chest Hospital, Harbin 150056, China
关键词:
人工智能云技术自动勾画乳腺癌心脏亚结构
Keywords:
Keywords: artificial intelligence cloud technology auto-segmentation breast cancer heart substructure
分类号:
R318;R811.1
DOI:
DOI:10.3969/j.issn.1005-202X.2020.12.024
文献标志码:
A
摘要:
目的:评估人工智能云技术勾画平台(AI Contour)在乳腺癌患者心脏亚结构自动勾画中的准确性和可行性。方法:选取10例进行乳腺癌放射治疗患者的血管增强CT作为研究对象。在AI Contour上分别采用手动勾画、自动勾画和自动勾画后手动修改模式来完成10例患者的心脏亚结构勾画,包括左心房、右心房、左心室、右心室。比较Dice相似性系数(DSC)、Jaccard系数(JC)、Hausdorf距离(HD)、质心偏差(CMD)、包容性系数(IncI)、敏感性指数(SI)、勾画时间。结果:以手动勾画为金标准,自动勾画与手动勾画各心脏亚结构的DSC>0.8,JC>0.6,HD<9 mm,CMD<5 mm,IncI>0.8,SI>0.7。自动勾画后手动修改进一步提高了勾画精度,其中JC>0.8。自动勾画时间与手动勾画时间为(85.50±6.06) s vs (1 160.30±74.31) s,差异具有统计学意义(P<0.05)。自动勾画后手动修改总时间与手动勾画时间为(558.70±33.40) s vs (1 160.30±74.31) s,差异具有统计学意义(P<0.05)。结论:通过比较发现自动勾画技术能以较高的精度完成乳腺癌患者左心房、右心房、左心室、右心室的勾画,节省了大量时间,自动勾画后手动修改能进一步提高各心脏亚结构的勾画精度,同时云勾画平台具有远程协作的优势,值得推广运用。
Abstract:
Abstract: Objective To evaluate the accuracy and feasibility of artificial intelligence cloud technology contouring platform (AI Contour) in auto-segmentation of cardiac substructure of breast cancer patients. Methods The vascular enhanced CTs from 10 patients underwent breast cancer radiotherapy from July 2019 to December 2019 were selected as the research object. On AI Contour, manual segmentation, auto-segmentation and manual modification after auto-segmentation were used to segment the cardiac substructures of 10 patients, including left atrium, right atrium, left ventricle and right ventricle. The differences of data in Dice similarity coefficient (DSC), Jaccard coefficient (JC), Hausdorf distance (HD), Center of Mass Deviation (CMD), inclusiveness coefficient (IncI), sensitivity index (SI), and segmentation time were compared. Results With manual segmentation as the gold standard, the results of each cardiac substructure made by auto-segmentation and manual segmentation have differences of DSC>0.8, JC>0.6, HD<9 mm, CMD<5 mm, IncI>0.8, SI>0.7. Manual modification after auto-segmentation further improved the segmentation accuracy, in which JC>0.8. The time of auto-segmentation and manual segmentation were (85.50±6.06) s vs. (1160.30±74.31) s respectively, and the difference was statistically significant (P<0.05). The total time of manual modification after auto-segmentation and manual segmentation were (558.70±33.40) s vs. (1160.30±74.31) s, and the difference was statistically significant (P<0.05). Conclusions Through comparison, it was found that the auto-segmentation technique can segment the left atrium, right atrium, left ventricle, and right ventricle of breast cancer patients with high accuracy, saving a lot of time. Manual modification after auto-segmentation can further improve the segmentation accuracy of cardiac substructure of each part. The cloud segmentation platform has the advantage of remote collaboration, and is worth popularizing.

相似文献/References:

[1]王弈,李传富.人工智能方法在医学图像处理中的研究新进展[J].中国医学物理学杂志,2013,30(03):4138.[doi:10.3969/j.issn.1005-202X.2013.03.013]
[2]王亚,李永欣,黄文华.人类脑计划的研究进展[J].中国医学物理学杂志,2016,33(2):109.[doi:10.3969/j.issn.1005-202X.2016.02.001]
 [J].Chinese Journal of Medical Physics,2016,33(12):109.[doi:10.3969/j.issn.1005-202X.2016.02.001]
[3]祁红琳,胡先玲,李传明,等. 基于MRI纹理特征的早期肝癌术后复发预测[J].中国医学物理学杂志,2017,34(9):908.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.010]
 [J].Chinese Journal of Medical Physics,2017,34(12):908.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.010]
[4]纪春阳,徐秀林,王燕. 深度神经网络技术在肿瘤细胞识别中的应用[J].中国医学物理学杂志,2019,36(9):1113.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.022]
 JI Chunyang,XU Xiulin,WANG Yan. Application of deep neural network in tumor cell recognition[J].Chinese Journal of Medical Physics,2019,36(12):1113.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.022]
[5]王沛沛,李金凯,李彩虹,等.基于人工智能技术的危及器官自动勾画在胸部肿瘤中的应用[J].中国医学物理学杂志,2019,36(11):1346.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.019]
 WANG Peipei,LI Jinkai,LI Caihong,et al.Application of automatic organs-at-risk segmentation based on artificial intelligence technology in thoracic tumors[J].Chinese Journal of Medical Physics,2019,36(12):1346.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.019]
[6]莫梓华,高红霞,黄飚.人工智能在中枢神经系统疾病影像诊断中的应用进展[J].中国医学物理学杂志,2020,37(6):792.[doi:DOI:10.3969/j.issn.1005-202X.2020.06.025]
 MO Zihua,GAO Hongxia,et al.Application of artificial intelligence in imaging diagnosis of central nervous system diseases: a review[J].Chinese Journal of Medical Physics,2020,37(12):792.[doi:DOI:10.3969/j.issn.1005-202X.2020.06.025]
[7]刘思远,张丽军,刘雷.人工智能在抗击新型冠状病毒肺炎疫情中的应用[J].中国医学物理学杂志,2020,37(8):1076.[doi:DOI:10.3969/j.issn.1005-202X.2020.08.026]
 LIU Siyuan,ZHANG Lijun,LIU Lei.Application of artificial intelligence in fighting against COVID-19 pandemic[J].Chinese Journal of Medical Physics,2020,37(12):1076.[doi:DOI:10.3969/j.issn.1005-202X.2020.08.026]
[8]陈思佳,石丽婉,林勤.基于知识的放射治疗技术研究[J].中国医学物理学杂志,2020,37(11):1350.[doi:DOI:10.3969/j.issn.1005-202X.2020.11.002]
 CHEN Sijia,SHI Liwan,LIN Qin.Research on knowledge-based radiation therapy[J].Chinese Journal of Medical Physics,2020,37(12):1350.[doi:DOI:10.3969/j.issn.1005-202X.2020.11.002]
[9]邓灵波,周雯,赵双全,等.人工智能辅助诊断系统在新型冠状病毒肺炎诊断中的初步应用[J].中国医学物理学杂志,2020,37(12):1604.[doi:DOI:10.3969/j.issn.1005-202X.2020.12.025]
 DENG Lingbo,ZHOU Wen,ZHAO Shuangquan,et al.Preliminary application of AI diagnosis system in the diagnosis of the novel coronavirus infected pneumonia[J].Chinese Journal of Medical Physics,2020,37(12):1604.[doi:DOI:10.3969/j.issn.1005-202X.2020.12.025]
[10]蔡晓琼,郭晶磊,黄继汉,等.人工智能技术在新型冠状病毒肺炎中的应用[J].中国医学物理学杂志,2021,38(7):915.[doi:DOI:10.3969/j.issn.1005-202X.2021.07.024]
 CAI Xiaoqiong,GUO Jinglei,HUANG Jihan,et al.Advances in research on artificial intelligence technology in COVID-19[J].Chinese Journal of Medical Physics,2021,38(12):915.[doi:DOI:10.3969/j.issn.1005-202X.2021.07.024]

备注/Memo

备注/Memo:
【收稿日期】2020-06-20 【基金项目】国家自然科学基金青年科学基金(81700305) 【作者简介】陈子印,硕士,放疗物理师,研究方向:肿瘤放射物理,E-mail: chenziyin1020@126.com 【通信作者】刘广忠,博士,副主任医师,研究方向:放射性心脏损伤及保护,E-mail: LGZ2700@126.com
更新日期/Last Update: 2020-12-30