[1]冯琴昌.基于OpenBCI与OpenViBE的脑机接口设计[J].中国医学物理学杂志,2020,37(2):210-219.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.014]
 FENG Qinchang.Design of brain-computer interface based on OpenBCI and OpenViBE[J].Chinese Journal of Medical Physics,2020,37(2):210-219.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.014]
点击复制

基于OpenBCI与OpenViBE的脑机接口设计()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
37
期数:
2020年第2期
页码:
210-219
栏目:
医学信号处理与医学仪器
出版日期:
2020-02-25

文章信息/Info

Title:
Design of brain-computer interface based on OpenBCI and OpenViBE
文章编号:
1005-202X(2020)02-0210-10
作者:
冯琴昌
广东省医疗器械研究所, 广东 广州 510500
Author(s):
FENG Qinchang
Guangdong Institude of Medical Instruments, Guangzhou 510500, China
关键词:
脑机接口脑电信号OpenBCIOpenViBE运动想像
Keywords:
Keywords: brain-computer interface electroencephalogram signal OpenBCI OpenViBE motor imagery
分类号:
R318
DOI:
DOI:10.3969/j.issn.1005-202X.2020.02.014
文献标志码:
A
摘要:
以OpenBCI为脑电信号采集平台,OpenViBE为脑电信号分析平台,并以源自大脑感觉运动皮层的μ节律和β节律为基础,采用共空间模式算法作为特征提取方法,结合高斯核支持向量机,研制用于机械臂控制的运动想象脑机接口,并通过实验对信号特征提取方法以及分类算法的效果进行评估。初步实验结果表明,采用共空间模式算法处理后的分类准确率高于表面拉普拉斯空间滤波器,且支持向量机的分类性能优于线性判别分析。本系统的控制准确率达95%以上,可实现机械臂的有效控制。未来的研究将探索如何通过自定义插件来提高OpenViBE的硬件控制功能。 【关键词】脑机接口;脑电信号;OpenBCI;OpenViBE;运动想像
Abstract:
Abstract: A motor imagery brain-computer interface for the control of mechanical arms is designed based on the μ rhythm and β rhythm from the ensorimotor cortex of brain, with OpenBCI as electroencephalogram (EEG) signal acquisition platform, OpenViBE as EEG analysis platform, common spatial pattern algorithm for feature extraction, and Gaussian kernel support vector machine for feature classification. Moreover, the performances of signal feature extraction method and classification algorithm were evaluated by experiments. The preliminary experimental results reveal that the classification accuracy after the signal extraction with common spatial pattern algorithm is higher than that after the signal extraction with surface Laplacian spatial filter, and that the classification performance of support vector machine is superior to linear discriminant analysis. The designed system can realize the effective control of mechanical arms, with a control accuracy higher than 95%. Future studies will focus on improving the hardware control functions of OpenViBE by custom plug-in.

相似文献/References:

[1]王怡玲,覃玉荣,郭湛超,等.基于不同闪烁频率光刺激的脑电压变化研究[J].中国医学物理学杂志,2014,31(05):5184.[doi:10.3969/j.issn.1005-202X.2014.05.019]
[2]杨建平,张德乾,吕敬祥,等.操作发起过程多脑区协作的脑电谱熵特征[J].中国医学物理学杂志,2016,33(1):44.[doi:DOI:10.3969/j.issn.1005-202X.2016.01.010]
 [J].Chinese Journal of Medical Physics,2016,33(2):44.[doi:DOI:10.3969/j.issn.1005-202X.2016.01.010]
[3]崔招焕,等.大鼠癫痫脑电信号采集[J].中国医学物理学杂志,2016,33(2):118.[doi:10.3969/j.issn.1005-202X.2016.02.003]
 [J].Chinese Journal of Medical Physics,2016,33(2):118.[doi:10.3969/j.issn.1005-202X.2016.02.003]
[4]顾家军,叶继伦.麻醉深度监测中脑电信号特征提取方法[J].中国医学物理学杂志,2016,33(2):157.[doi:10.3969/j.issn.1005-202X.2016.02.010]
 [J].Chinese Journal of Medical Physics,2016,33(2):157.[doi:10.3969/j.issn.1005-202X.2016.02.010]
[5]刘岩,李幼军,陈萌. 基于固有模态分解和深度学习的抑郁症脑电信号分类分析[J].中国医学物理学杂志,2017,34(9):963.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.021]
 [J].Chinese Journal of Medical Physics,2017,34(2):963.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.021]
[6]马玉良,刘卫星,张淞杰,等.基于ABC-SVM的运动想象脑电信号模式分类[J].中国医学物理学杂志,2018,35(9):1056.[doi:10.3969/j.issn.1005-202X.2018.09.012]
 MAYuliang,LIUWeixing,ZHANG Songjie,et al.Pattern classification of motor imagery EEG signals based on ABC-SVM algorithm[J].Chinese Journal of Medical Physics,2018,35(2):1056.[doi:10.3969/j.issn.1005-202X.2018.09.012]
[7]周杰,杨国雨,徐涛. 基于空间频率与时间序列信息的多类运动想象脑电分类[J].中国医学物理学杂志,2019,36(1):81.[doi:DOI:10.3969/j.issn.1005-202X.2019.01.016]
 ZHOU Jie,YANG Guoyu,XU Tao. Classification of multi-class motor imagery EEG data based on spatial frequency and time-series information[J].Chinese Journal of Medical Physics,2019,36(2):81.[doi:DOI:10.3969/j.issn.1005-202X.2019.01.016]
[8]李冬,金韬,冯智英,等.基于脑电信号的疼痛强度识别方法研究[J].中国医学物理学杂志,2019,36(7):836.[doi:DOI:10.3969/j.issn.1005-202X.2019.07.017]
 LI Dong,JIN Tao,FENG Zhiying,et al.Pain intensity recognition based on EEG signals[J].Chinese Journal of Medical Physics,2019,36(2):836.[doi:DOI:10.3969/j.issn.1005-202X.2019.07.017]
[9]赵丽,崔立杰.基于变分模态分解的眼电伪迹去除[J].中国医学物理学杂志,2020,37(2):237.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.018]
 ZHAO Li,CUI Lijie.Electrooculogram artifacts removal based on variational mode decomposition[J].Chinese Journal of Medical Physics,2020,37(2):237.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.018]
[10]顾家军,叶继伦,崔钰涵,等.BP网络在麻醉深度监测算法上的应用[J].中国医学物理学杂志,2021,38(8):985.[doi:DOI:10.3969/j.issn.1005-202X.2021.08.013]
 GU Jiajun,YE Jilun,CUI Yuhan,et al.Application of back-propagation network in algorithm for monitoring depth of anesthesia[J].Chinese Journal of Medical Physics,2021,38(2):985.[doi:DOI:10.3969/j.issn.1005-202X.2021.08.013]
[11]刘畅,覃玉荣,时文健.视听觉刺激下大脑头皮电位空间变化特性[J].中国医学物理学杂志,2018,35(10):1225.[doi:DOI:10.3969/j.issn.1005-202X.2018.010.023]
 LIU Chang,QIN Yurong,SHI Wenjian. Spatial variation characteristics of scalp potentials under audiovisual stimuli[J].Chinese Journal of Medical Physics,2018,35(2):1225.[doi:DOI:10.3969/j.issn.1005-202X.2018.010.023]

备注/Memo

备注/Memo:
【收稿日期】2019-11-12 【基金项目】广东省科技计划项目(2011B060500058);广州市科技计划(产学研协同创新重大专项)(201604020144) 【作者简介】冯琴昌,硕士,高级工程师,研究方向:医疗器械新技术新产品研发及临床应用,E-mail: fqc8888@126.com
更新日期/Last Update: 2020-03-03