[1]郑嘉强,程云章,边俊杰.基于脉搏波特征参数的无创连续血压测量研究进展[J].中国医学物理学杂志,2020,37(6):749-753.[doi:DOI:10.3969/j.issn.1005-202X.2020.06.017]
 ZHENG Jiaqiang,CHENG Yunzhang,BIAN Junjie.Advances in non-invasive continuous blood pressure measurement based on characteristic parameters of pulse wave[J].Chinese Journal of Medical Physics,2020,37(6):749-753.[doi:DOI:10.3969/j.issn.1005-202X.2020.06.017]
点击复制

基于脉搏波特征参数的无创连续血压测量研究进展()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
37
期数:
2020年第6期
页码:
749-753
栏目:
医学信号处理与医学仪器
出版日期:
2020-06-25

文章信息/Info

Title:
Advances in non-invasive continuous blood pressure measurement based on characteristic parameters of pulse wave
文章编号:
1005-202X(2020)06-0749-05
作者:
郑嘉强1程云章1边俊杰2
1.上海理工大学上海介入医疗器械工程技术研究中心, 上海 200093; 2.浙江善时医疗器械有限公司, 浙江 杭州 310016
Author(s):
ZHENG Jiaqiang1 CHENG Yunzhang1 BIAN Junjie2
1. Shanghai Engineering Research Center of Interventional Medical Devices, University of Shanghai for Science and Technology, Shanghai 200093, China 2. Zhejiang Shanshi Medical Technology Co., Ltd, Hangzhou 310016, China
关键词:
脉搏波特征参数血压测量综述
Keywords:
Keywords: pulse wave characteristic parameter blood pressure measurement review
分类号:
R318
DOI:
DOI:10.3969/j.issn.1005-202X.2020.06.017
文献标志码:
A
摘要:
脉搏波与血压变化息息相关,可以通过脉搏波特征参数进行无创连续血压测量。本研究首先介绍脉搏波特征参数以及通过脉搏波特征参数进行无创连续血压测量的原理;总结了当前利用脉搏波特征参数计算血压的测量模型,主要有一元线性回归模型、多元线性回归模型和神经网络模型,并主要分析了这些模型的测量原理和研究进展,以及各种模型的优缺点;最后对基于脉搏波特征参数进行血压测量,研究方向进行了展望。
Abstract:
Abstract: Pulse wave is closely related to the change of blood pressure. Non-invasive continuous blood pressure measurement can be carried out by the characteristic parameters of pulse wave. Herein the characteristic parameters of pulse wave and the principle of non-invasive continuous blood pressure measurement based on the characteristic parameters of pulse wave are introduced, and several models for calculating blood pressure by the characteristic parameters of pulse wave, including unary linear regression model, multivariable linear regression model and neural network model, are summarized. The measurement principle and progress in the researches on these models, as well as the advantages and disadvantages of various models are also analyzed. Finally, the research direction of blood pressure measurement based on the characteristic parameters of pulse wave is discussed.

相似文献/References:

[1]郭垚垚,陈兆学.一种脉搏波和心电信号时域基线漂移消除方法[J].中国医学物理学杂志,2016,33(2):167.[doi:10.3969/j.issn.1005-202X.2016.02.012]
 [J].Chinese Journal of Medical Physics,2016,33(6):167.[doi:10.3969/j.issn.1005-202X.2016.02.012]
[2]苏志刚,朱海玲,郝敬堂. 基于高斯混合模型的脉搏波特征提取方法[J].中国医学物理学杂志,2018,35(1):76.[doi:DOI:10.3969/j.issn.1005-202X.2018.01.014]
 SU Zhigang,ZHU Hailing,HAO Jingtang. Gaussian mixture model-based method for extracting the features of pulse wave[J].Chinese Journal of Medical Physics,2018,35(6):76.[doi:DOI:10.3969/j.issn.1005-202X.2018.01.014]
[3]苏志刚,吕江波,郝敬堂. 基于平滑先验法去除脉搏波基线漂移[J].中国医学物理学杂志,2018,35(10):1197.[doi:DOI:10.3969/j.issn.1005-202X.2018.10.017]
 SU Zhigang,LÜ,Jiangbo,et al. Removal of baseline drift of pulse wave based on smoothness prior[J].Chinese Journal of Medical Physics,2018,35(6):1197.[doi:DOI:10.3969/j.issn.1005-202X.2018.10.017]
[4]陈倩蓉,梁永波,赵飞骏,等. 基于心电-脉搏波的心血管疾病识别研究[J].中国医学物理学杂志,2019,36(2):210.[doi:DOI:10.3969/j.issn.1005-202X.2019.02.017]
 CHEN Qianrong,LIANG Yongbo,ZHAO Feijun,et al. Cardiovascular disease recognition based on electrocardiogram data and pulse wave[J].Chinese Journal of Medical Physics,2019,36(6):210.[doi:DOI:10.3969/j.issn.1005-202X.2019.02.017]
[5]程敏,陈兆学. 基于指端脉搏波视频信号的心率稳定检测算法[J].中国医学物理学杂志,2019,36(2):215.[doi:DOI:10.3969/j.issn.1005-202X.2019.02.018]
 CHENG Min,CHEN Zhaoxue. An algorithm based on video signals of pulse waves on the finger tip for stable detection of heart rates[J].Chinese Journal of Medical Physics,2019,36(6):215.[doi:DOI:10.3969/j.issn.1005-202X.2019.02.018]
[6]鲍凯林,陈兆学.基于多尺度样本熵方法分析欧拉视频放大技术在非接触式测量的作用[J].中国医学物理学杂志,2020,37(5):635.[doi:10.3969/j.issn.1005-202X.2020.05.020]
 BAO Kailin,CHEN Zhaoxue.Application of Euler video amplification technology in non-contact measurement: an analysis basedon multi-scale sample entropy[J].Chinese Journal of Medical Physics,2020,37(6):635.[doi:10.3969/j.issn.1005-202X.2020.05.020]
[7]张浩强,安蒙蒙,卜朝晖,等.基于超声回波信号的指端脉搏波提取[J].中国医学物理学杂志,2020,37(10):1306.[doi:DOI:10.3969/j.issn.1005-202X.2020.10.016]
 ZHANG Haoqiang,AN Mengmeng,BU Zhaohui,et al.Fingertip pulse wave extraction based on ultrasonic echo signal[J].Chinese Journal of Medical Physics,2020,37(6):1306.[doi:DOI:10.3969/j.issn.1005-202X.2020.10.016]
[8]刘啸峰,黄述斌,胡磊.CT动态增强扫描中时间密度曲线及特征参数值对孤立性肺结节的诊断价值[J].中国医学物理学杂志,2021,38(6):713.[doi:DOI:10.3969/j.issn.1005-202X.2021.06.010]
 LIU Xiaofeng,HUANG Shubin,HU Lei.Diagnostic value of time-density curve and characteristic parameters in dynamic contrast-enhanced CT scan for solitary pulmonary nodules[J].Chinese Journal of Medical Physics,2021,38(6):713.[doi:DOI:10.3969/j.issn.1005-202X.2021.06.010]
[9]彭莉,宋鑫,鄢苏鹏,等.基于PPG收缩期上升波形特征参数的无创血压检测模型[J].中国医学物理学杂志,2022,39(3):333.[doi:DOI:10.3969/j.issn.1005-202X.2022.03.013]
 PENG Li,SONG Xin,YAN Supeng,et al.Noninvasive blood pressure measurement model based on characteristic parameters of PPG systolic upstroke waveform[J].Chinese Journal of Medical Physics,2022,39(6):333.[doi:DOI:10.3969/j.issn.1005-202X.2022.03.013]
[10]周韡鼎,陈兆学.基于深度学习的指-桡端脉搏波信号转换方法[J].中国医学物理学杂志,2023,40(2):202.[doi:DOI:10.3969/j.issn.1005-202X.2023.02.013]
 ZHOU Weiding,CHEN Zhaoxue.Deep learning-based method for finger-radial PPG signal transferring[J].Chinese Journal of Medical Physics,2023,40(6):202.[doi:DOI:10.3969/j.issn.1005-202X.2023.02.013]
[11]王一飞,刘光浚,刘轩吉,等.基于神经网络的脉搏波信号血压检测算法[J].中国医学物理学杂志,2022,39(8):998.[doi:DOI:10.3969/j.issn.1005-202X.2022.08.014]
 WANG Yifei,LIU Guangjun,LIU Xuanji,et al.Neural network-based blood pressure detection algorithms for pulse wave signals[J].Chinese Journal of Medical Physics,2022,39(6):998.[doi:DOI:10.3969/j.issn.1005-202X.2022.08.014]

备注/Memo

备注/Memo:
【收稿日期】2020-01-12 【基金项目】上海工程技术研究中心资助项目(18DZ2250900) 【作者简介】郑嘉强,硕士,研究方向:无创实时血压监测技术,E-mail:m18217109563@163.com 【通信作者】程云章,教授,博士生导师,研究方向:血流动力学及其临床应用,E-mail: cyz2008@usst.edu.cn
更新日期/Last Update: 2020-07-03