相似文献/References:
[1]袁野,王夏天,张子辰,等.基于小波变换和改进的瞬态独立成分分析融合算法的心电信号降噪方法[J].中国医学物理学杂志,2016,33(4):415.[doi:10.3969/j.issn.1005-202X.2016.04.019]
[J].Chinese Journal of Medical Physics,2016,33(3):415.[doi:10.3969/j.issn.1005-202X.2016.04.019]
[2]刘迎军,杨志景,李淑龙.静息态功能磁共振成像数据中几个常用指标的相关性[J].中国医学物理学杂志,2017,34(1):26.[doi:10.3969/j.issn.1005-202X.2017.01.006]
[J].Chinese Journal of Medical Physics,2017,34(3):26.[doi:10.3969/j.issn.1005-202X.2017.01.006]
[3]付令,武杰.独立成分分析在视觉运动核磁共振数据处理中的应用[J].中国医学物理学杂志,2017,34(7):676.[doi:10.3969/j.issn.1005-202X.2017.07.005]
[J].Chinese Journal of Medical Physics,2017,34(3):676.[doi:10.3969/j.issn.1005-202X.2017.07.005]
[4]许光,吴宏,江桂华,等. 原发性失眠患者大脑额顶网络的异常功能连接[J].中国医学物理学杂志,2018,35(8):988.[doi:DOI:10.3969/j.issn.1005-202X.2018.08.023]
XU Guang,WU Hong,JIANG Guihua,et al. Abnormal functional connectivity in frontoparietal network in primary insomnia patients[J].Chinese Journal of Medical Physics,2018,35(3):988.[doi:DOI:10.3969/j.issn.1005-202X.2018.08.023]
[5]刘畅,董芳,王宪福,等. 基于Go/NoGo任务的青年吸烟者抑制控制能力的事件相关电位研究[J].中国医学物理学杂志,2019,36(10):1228.[doi:DOI:10.3969/j.issn.1005-202X.2019.10.021]
LIU Chang,DONG Fang,WANG Xianfu,et al. Event-related potential study on inhibitory control ability of adolescent smokers based on Go/NoGo task[J].Chinese Journal of Medical Physics,2019,36(3):1228.[doi:DOI:10.3969/j.issn.1005-202X.2019.10.021]
[6]刘越,王梦星,杜小霞,等.基于独立成分分析的遗尿症儿童脑功能网络研究[J].中国医学物理学杂志,2021,38(3):382.[doi:DOI:10.3969/j.issn.1005-202X.2021.03.021]
LIU Yue,WANG Mengxing,DU Xiaoxia,et al.Brain functional network of pediatric patients with enuresis: a research based on independent component analysis[J].Chinese Journal of Medical Physics,2021,38(3):382.[doi:DOI:10.3969/j.issn.1005-202X.2021.03.021]
[7]解晓燕,薛婷,张云淼,等.基于动态功能连接分析的青少年吸烟者大脑静息态默认模式网络[J].中国医学物理学杂志,2022,39(6):690.[doi:DOI:10.3969/j.issn.1005-202X.2022.06.006]
XIE Xiaoyan,XUE Ting,ZHANG Yunmiao,et al.Resting-state default mode network in adolescent smokers: a research based on dynamic functional connectivity analysis[J].Chinese Journal of Medical Physics,2022,39(3):690.[doi:DOI:10.3969/j.issn.1005-202X.2022.06.006]
[8]张思河,曹乐,王金玮,等.基于表面肌电信号的BiLSTM-SA双臂肌力估计[J].中国医学物理学杂志,2023,40(11):1383.[doi:DOI:10.3969/j.issn.1005-202X.2023.11.011]
ZHANG Sihe,CAO Le,WANG Jinwei,et al.BiLSTM-SA model for muscle strength estimation from sEMG[J].Chinese Journal of Medical Physics,2023,40(3):1383.[doi:DOI:10.3969/j.issn.1005-202X.2023.11.011]