相似文献/References:
[1]方兆山,雷其理,刘星星,等.三维可视化技术辅助复杂性肝切除术的应用价值[J].中国医学物理学杂志,2016,33(8):793.[doi:10.3969/j.issn.1005-202X.2016.08.008]
[J].Chinese Journal of Medical Physics,2016,33(11):793.[doi:10.3969/j.issn.1005-202X.2016.08.008]
[2]仇清涛,段敬豪,巩贯忠,等.基于三维动态区域生长算法的肝脏自动分割[J].中国医学物理学杂志,2017,34(7):660.[doi:10.3969/j.issn.1005-202X.2017.07.002]
[J].Chinese Journal of Medical Physics,2017,34(11):660.[doi:10.3969/j.issn.1005-202X.2017.07.002]
[3]门阔,戴建荣. 利用深度反卷积神经网络自动勾画放疗危及器官[J].中国医学物理学杂志,2018,35(3):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
MEN Kuo,DAI Jianrong. Automatic segmentation of organs at risk in radiotherapy using deep deconvolutional neural network[J].Chinese Journal of Medical Physics,2018,35(11):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
[4]秦楠楠,薛旭东,吴爱林,等.基于U-net卷积神经网络的宫颈癌临床靶区和危及器官自动勾画的研究[J].中国医学物理学杂志,2020,37(4):524.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.023]
QIN Nannan,XUE Xudong,WU Ailin,et al.Automatic segmentation of clinical target volumes and organs-at-risk in radiotherapy for cervical cancer using U-net convolutional neural network[J].Chinese Journal of Medical Physics,2020,37(11):524.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.023]
[5]余行,刘欢,傅玉川.放疗影像自动分割效果评估中几何参数与剂量学参数之间的关联性[J].中国医学物理学杂志,2021,38(5):540.[doi:DOI:10.3969/j.issn.1005-202X.2021.05.003]
YU Hang,LIU Huan,FU Yuchuan.Correlation between geometric parameters and dosimetric parameters in the evaluation of image auto-segmentation for radiotherapy[J].Chinese Journal of Medical Physics,2021,38(11):540.[doi:DOI:10.3969/j.issn.1005-202X.2021.05.003]
[6]李雪,周金治,莫春梅,等.基于特征融合的U-Net肺自动分割方法[J].中国医学物理学杂志,2021,38(6):704.[doi:DOI:10.3969/j.issn.1005-202X.2021.06.009]
LI Xue,ZHOU Jinzhi,et al.U-Net automatic lung segmentation based on feature fusion[J].Chinese Journal of Medical Physics,2021,38(11):704.[doi:DOI:10.3969/j.issn.1005-202X.2021.06.009]
[7]沈镇炯,彭昭,孟祥银,等.基于级联3D U-Net的CT和MR视交叉自动分割方法[J].中国医学物理学杂志,2021,38(8):950.[doi:DOI:10.3969/j.issn.1005-202X.2021.08.006]
SHEN Zhenjiong,PENG Zhao,MENG Xiangyin,et al.Automatic optic chiasm segmentation using CT and MRI based on cascaded 3D U-Net[J].Chinese Journal of Medical Physics,2021,38(11):950.[doi:DOI:10.3969/j.issn.1005-202X.2021.08.006]
[8]曹洋森,朱晓斐,韩妙飞,等.基于级联式深度网络模型的胃及胰腺自动分割研究[J].中国医学物理学杂志,2021,38(8):971.[doi:DOI:10.3969/j.issn.1005-202X.2021.08.010]
CAO Yangsen,ZHU Xiaofei,HAN Miaofei,et al.Automatic segmentation of the stomach and pancreas using cascaded deep convolutional neural network[J].Chinese Journal of Medical Physics,2021,38(11):971.[doi:DOI:10.3969/j.issn.1005-202X.2021.08.010]
[9]张富利,王雅棣,王秋生.放射治疗中医学图像自动分割的研究进展[J].中国医学物理学杂志,2021,38(9):1108.[doi:10.3969/j.issn.1005-202X.2021.09.011]
ZHANG Fuli,WANG Yadi,WANG Qiusheng.Advances in automatic segmentation of medical images in radiotherapy[J].Chinese Journal of Medical Physics,2021,38(11):1108.[doi:10.3969/j.issn.1005-202X.2021.09.011]
[10]宋宇宸,彭昭,吴昊天,等.基于2D/3D U-plus-net的心脏自动分割[J].中国医学物理学杂志,2021,38(9):1172.[doi:10.3969/j.issn.1005-202X.2021.09.023]
SONG Yuchen,PENG Zhao,WU Haotian,et al.Automatic heart segmentation based on 2D/3D U-plus-net[J].Chinese Journal of Medical Physics,2021,38(11):1172.[doi:10.3969/j.issn.1005-202X.2021.09.023]