[1]李渊强,吴宇雳,杨孝平.基于级联式三维卷积神经网络的肝肿瘤自动分割[J].中国医学物理学杂志,2019,36(11):1362-1366.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.022]
 LI Yuanqiang,WU Yuli,YANG Xiaoping.Automatic liver tumor segmentation based on cascaded 3D convolutional neural network[J].Chinese Journal of Medical Physics,2019,36(11):1362-1366.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.022]
点击复制

基于级联式三维卷积神经网络的肝肿瘤自动分割()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
36卷
期数:
2019年第11期
页码:
1362-1366
栏目:
其他(激光医学等)
出版日期:
2019-11-25

文章信息/Info

Title:
Automatic liver tumor segmentation based on cascaded 3D convolutional neural network
文章编号:
1005-202X(2019)11-1362-05
作者:
李渊强1吴宇雳1杨孝平2
1.南京理工大学理学院, 江苏 南京 210094; 2.南京大学数学系, 江苏 南京 210094
Author(s):
LI Yuanqiang1 WU Yuli1 YANG Xiaoping2
1. School of Science, Nanjing University of Science and Technology, Nanjing 210094, China; 2. Department of Mathematics, Nanjing University, Nanjing 210094, China
关键词:
肝肿瘤自动分割级联式卷积神经网络残差结构
Keywords:
liver tumor automatic segmentation cascaded convolutional neural network residual structure
分类号:
R318;TP183
DOI:
DOI:10.3969/j.issn.1005-202X.2019.11.022
文献标志码:
A
摘要:
目的:根据肝肿瘤CT影像中的特异性、分割难点以及残差网络思想,提出一种基于级联式卷积神经网络的全自动CT图像肝脏肿瘤分割方法。方法:首先根据临床知识对CT数据进行预处理,减少干扰;然后基于一个肝脏粗分割网络对肝脏进行分割,并根据分割结果坐标选取肝脏作为感兴趣区域;最后在感兴趣区域内对肿瘤进行精准分割。结果:通过级联式网络分割可以有效减少计算时间以及避免其它组织的干扰,从而实现肝肿瘤的快速分割。本研究提出的方法在2017年MICCAI肝肿瘤分割公开比赛数据集LiTS中进行测试,平均Dice分数为0.663,证实了其对肝肿瘤分割的有效性。结论:基于级联式卷积神经网络的全自动CT图像肝脏肿瘤分割方法可以实现肿瘤的快速分割。后期研究将继续增加数据量,对肿瘤进行分类,从而进一步完善模型。
Abstract:
Objective To propose a cascade convolutional neural network for full-automatic liver tumor segmentation in CT image according to the specificity of liver tumor CT image, difficulty of liver tumor segmentation and the idea of residual network. Methods Firstly, CT data were preprocessed based on clinical information, thus reducing interferences. Then a coarse liver segmentation network was used for liver segmentation, and according to the location of segmentation results, the liver was selected as the region of interest. Finally, the tumor was segmented accurately in the region of interest. Results A fast segmentation of liver tumor was realized by cascaded network segmentation which effectively reduced computational time and avoided interferences from other tissues. The proposed method was tested on the dataset of MICCAI 2017 liver tumor segmentation challenge (LiTS) and achieved an average Dice score of 0.663, which verified its effectiveness in the segmentation of liver tumor. Conclusion The full-automatic liver tumor segmentation in CT image based on cascaded convolutional neural network can be used to realize fast tumor segmentation. More cases will be included and tumor classification will be conducted in later studies, so as to further improve the model.

相似文献/References:

[1]方兆山,雷其理,刘星星,等.三维可视化技术辅助复杂性肝切除术的应用价值[J].中国医学物理学杂志,2016,33(8):793.[doi:10.3969/j.issn.1005-202X.2016.08.008]
 [J].Chinese Journal of Medical Physics,2016,33(11):793.[doi:10.3969/j.issn.1005-202X.2016.08.008]
[2]仇清涛,段敬豪,巩贯忠,等.基于三维动态区域生长算法的肝脏自动分割[J].中国医学物理学杂志,2017,34(7):660.[doi:10.3969/j.issn.1005-202X.2017.07.002]
 [J].Chinese Journal of Medical Physics,2017,34(11):660.[doi:10.3969/j.issn.1005-202X.2017.07.002]
[3]门阔,戴建荣. 利用深度反卷积神经网络自动勾画放疗危及器官[J].中国医学物理学杂志,2018,35(3):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
 MEN Kuo,DAI Jianrong. Automatic segmentation of organs at risk in radiotherapy using deep deconvolutional neural network[J].Chinese Journal of Medical Physics,2018,35(11):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
[4]秦楠楠,薛旭东,吴爱林,等.基于U-net卷积神经网络的宫颈癌临床靶区和危及器官自动勾画的研究[J].中国医学物理学杂志,2020,37(4):524.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.023]
 QIN Nannan,XUE Xudong,WU Ailin,et al.Automatic segmentation of clinical target volumes and organs-at-risk in radiotherapy for cervical cancer using U-net convolutional neural network[J].Chinese Journal of Medical Physics,2020,37(11):524.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.023]
[5]余行,刘欢,傅玉川.放疗影像自动分割效果评估中几何参数与剂量学参数之间的关联性[J].中国医学物理学杂志,2021,38(5):540.[doi:DOI:10.3969/j.issn.1005-202X.2021.05.003]
 YU Hang,LIU Huan,FU Yuchuan.Correlation between geometric parameters and dosimetric parameters in the evaluation of image auto-segmentation for radiotherapy[J].Chinese Journal of Medical Physics,2021,38(11):540.[doi:DOI:10.3969/j.issn.1005-202X.2021.05.003]
[6]李雪,周金治,莫春梅,等.基于特征融合的U-Net肺自动分割方法[J].中国医学物理学杂志,2021,38(6):704.[doi:DOI:10.3969/j.issn.1005-202X.2021.06.009]
 LI Xue,ZHOU Jinzhi,et al.U-Net automatic lung segmentation based on feature fusion[J].Chinese Journal of Medical Physics,2021,38(11):704.[doi:DOI:10.3969/j.issn.1005-202X.2021.06.009]
[7]沈镇炯,彭昭,孟祥银,等.基于级联3D U-Net的CT和MR视交叉自动分割方法[J].中国医学物理学杂志,2021,38(8):950.[doi:DOI:10.3969/j.issn.1005-202X.2021.08.006]
 SHEN Zhenjiong,PENG Zhao,MENG Xiangyin,et al.Automatic optic chiasm segmentation using CT and MRI based on cascaded 3D U-Net[J].Chinese Journal of Medical Physics,2021,38(11):950.[doi:DOI:10.3969/j.issn.1005-202X.2021.08.006]
[8]曹洋森,朱晓斐,韩妙飞,等.基于级联式深度网络模型的胃及胰腺自动分割研究[J].中国医学物理学杂志,2021,38(8):971.[doi:DOI:10.3969/j.issn.1005-202X.2021.08.010]
 CAO Yangsen,ZHU Xiaofei,HAN Miaofei,et al.Automatic segmentation of the stomach and pancreas using cascaded deep convolutional neural network[J].Chinese Journal of Medical Physics,2021,38(11):971.[doi:DOI:10.3969/j.issn.1005-202X.2021.08.010]
[9]张富利,王雅棣,王秋生.放射治疗中医学图像自动分割的研究进展[J].中国医学物理学杂志,2021,38(9):1108.[doi:10.3969/j.issn.1005-202X.2021.09.011]
 ZHANG Fuli,WANG Yadi,WANG Qiusheng.Advances in automatic segmentation of medical images in radiotherapy[J].Chinese Journal of Medical Physics,2021,38(11):1108.[doi:10.3969/j.issn.1005-202X.2021.09.011]
[10]宋宇宸,彭昭,吴昊天,等.基于2D/3D U-plus-net的心脏自动分割[J].中国医学物理学杂志,2021,38(9):1172.[doi:10.3969/j.issn.1005-202X.2021.09.023]
 SONG Yuchen,PENG Zhao,WU Haotian,et al.Automatic heart segmentation based on 2D/3D U-plus-net[J].Chinese Journal of Medical Physics,2021,38(11):1172.[doi:10.3969/j.issn.1005-202X.2021.09.023]

备注/Memo

备注/Memo:
【收稿日期】2019-06-20 【基金项目】国家自然科学基金(11531005) 【作者简介】李渊强,硕士,研究方向:医学图像处理,E-mail: yuanqiang li@njust.edu.cn 【通信作者】杨孝平,博士生导师,教授,研究方向:医学图像处理、偏微分方程,E-mail: xpyang@nju.edu.cn
更新日期/Last Update: 2019-11-28