[1]蒋莲,陈兆学. 基于心电信号提取呼吸信号的算法研究[J].中国医学物理学杂志,2019,36(4):462-469.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.018]
 JIANG Lian,CHEN Zhaoxue. Algorithm for extracting respiratory signals based on electrocardiogram signals[J].Chinese Journal of Medical Physics,2019,36(4):462-469.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.018]
点击复制

 基于心电信号提取呼吸信号的算法研究()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
36卷
期数:
2019年第4期
页码:
462-469
栏目:
医学信号处理与医学仪器
出版日期:
2019-04-25

文章信息/Info

Title:
 Algorithm for extracting respiratory signals based on electrocardiogram signals
文章编号:
1005-202X(2019)04-0462-08
作者:
 蒋莲陈兆学
 上海理工大学医疗器械与食品学院, 上海 200093
Author(s):
 JIANG Lian CHEN Zhaoxue
 School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
关键词:
 心电信号呼吸信号三次样条插值小波变换独立分量分析
Keywords:
 Keywords: electrocardiogram signal respiratory signal cubic spline interpolation wavelet transform independent component analysis
分类号:
R318.04;TN911.7
DOI:
DOI:10.3969/j.issn.1005-202X.2019.04.018
文献标志码:
A
摘要:
 目的:为了实现医用心电监护仪器对多种参数的检测,减少设备的复杂性和降低患者的不适感,基于呼吸运动对心电信号影响的理论依据,提出一种从心电信号提取呼吸信息新算法。方法:运用Pan & Tompkins检测心电信号的R波和S波特征点,先后利用三次样条插值法和重采样法分别对此两路特征点进行处理,得到在相同位置采样拟合的R波序列和S波序列,选用小波变换理论重构一路呼吸信号序列,最后将处理得到的R波序列、S波序列、重构的呼吸信号序列和原信号4路信号序列构成混合矩阵,经独立分量分析(ICA)方法分离得到两路包含呼吸信息的源信号序列(Z1序列和Z2序列)。运用MATLAB软件对该算法的处理结果进行验证,并与相关的研究方法相比较。结果:在时域上对比统计人体每分钟呼吸次数,误差较小。经ICA方法提取出的两路源信号序列与其它呼吸信号波形有着良好的相关性,其平均相似度达到95.94%以上。结论:本研究提出的心电信号算法能够满足呼吸参数检测的需求,该算法是有效的。
Abstract:
 Abstract: Objective To propose a new algorithm of electrocardiogram (ECG)-derived respiratory signals detection for achieving the detection of a variety of physiological parameters, reducing the complexity of equipment as well as relieving the discomfort of patients. Methods The Pan & Tompkins algorithm was used to detect the feature points of R and S waves in ECG signals. Subsequently, the obtained feature points were processed with cubic spline interpolation and re-sampling methods for obtaining the fitted R and S wave sequences at the same positions. The wavelet transform method was applied to reconstruct a respiratory signal sequence. Finally, a hybrid matrix composed of R wave sequence, S wave sequence, the reconstructed respiratory signal sequence and the original signal sequence was formed and then processed with independent component analysis to extract two source signal sequences with respiratory information, namely Z1 sequence and Z2 sequence. MATLAB software was used to verify the results of the proposed algorithm and compare the results with those obtained with other algorithms. Results The error was smaller when detecting the number of breaths per minute of a human body in time domain. The two source signal sequences extracted with independent component analysis had good correlations with other respiratory waveforms, with an average similarity higher than 95.94%. Conclusion The proposed algorithm can meet the needs of respiratory parameter detection and is proved to be effective.

相似文献/References:

[1]杨杰,张胜,余顺,等.一种基于二次样条母小波函数的心电QRS复合波检测算法[J].中国医学物理学杂志,2013,30(02):4036.[doi:10.3969/j.issn.1005-202X.2013.02.018]
[2]余顺,张胜,杨杰,等.静息状态下不同姿势心电的RR间隔研究[J].中国医学物理学杂志,2013,30(04):4285.[doi:10.3969/j.issn.1005-202X.2013.04.016]
[3]刘雄飞,周惠勇.基于提升小波变换和多种策略的QRS波检测算法[J].中国医学物理学杂志,2013,30(06):4557.[doi:10.3969/j.issn.1005-202X.2013.06.021]
[4]黄碧莹,唐桦明,钟能枝,等.基于多模板匹配的室性心动过速与室上性心动过速自动识别算法[J].中国医学物理学杂志,2016,33(3):280.[doi:DOI:10.3969/j.issn.1005-202X.2016.03.012]
 [J].Chinese Journal of Medical Physics,2016,33(4):280.[doi:DOI:10.3969/j.issn.1005-202X.2016.03.012]
[5]袁野,王夏天,张子辰,等.基于小波变换和改进的瞬态独立成分分析融合算法的心电信号降噪方法[J].中国医学物理学杂志,2016,33(4):415.[doi:10.3969/j.issn.1005-202X.2016.04.019]
 [J].Chinese Journal of Medical Physics,2016,33(4):415.[doi:10.3969/j.issn.1005-202X.2016.04.019]
[6]王遥,霍万里,熊壮,等.TACE手术中不同站姿下铅眼镜和铅面罩对医生眼晶状体防护效果的蒙特卡洛模拟比较[J].中国医学物理学杂志,2016,33(6):553.[doi:DOI:10.3969/j.issn.1005-202X.2016.06.003]
 [J].Chinese Journal of Medical Physics,2016,33(4):553.[doi:DOI:10.3969/j.issn.1005-202X.2016.06.003]
[7]张新,谷晓芳,王培臣,等.轻离子束治疗设备注册检验关键技术问题[J].中国医学物理学杂志,2016,33(6):559.[doi:10.3969/j.issn.1005-202X.2016.06.004]
 [J].Chinese Journal of Medical Physics,2016,33(4):559.[doi:10.3969/j.issn.1005-202X.2016.06.004]
[8]江芬芬,王培,康盛伟,等. 热释光剂量片测量肺部肿瘤放疗剂量的方法[J].中国医学物理学杂志,2016,33(6):564.[doi:10.3969/j.issn.1005-202X.2016.06.005]
 [J].Chinese Journal of Medical Physics,2016,33(4):564.[doi:10.3969/j.issn.1005-202X.2016.06.005]
[9]刘洪源,彭威,杨锐,等. 锥形束CT离线校正肺癌摆位误差[J].中国医学物理学杂志,2016,33(6):573.[doi:10.3969/j.issn.1005-202X.2016.06.007]
 [J].Chinese Journal of Medical Physics,2016,33(4):573.[doi:10.3969/j.issn.1005-202X.2016.06.007]
[10]赵彪,潘香,杨毅,等. 右乳癌保乳术后瘤床同步X线和后程电子线补量调强放疗剂量学比较[J].中国医学物理学杂志,2016,33(6):576.[doi:10.3969/j.issn.1005-202X.2016.06.008]
 [J].Chinese Journal of Medical Physics,2016,33(4):576.[doi:10.3969/j.issn.1005-202X.2016.06.008]
[11]吴敏,谢云,邬洋. 便携式心电监测系统的硬件设计与实现[J].中国医学物理学杂志,2018,35(2):210.[doi:DOI:10.3969/j.issn.1005-202X.2018.02.018]
 WU Min,XIE Yun,WU Yang. Hardware design and implementation of portable electrocardiogram monitoring system[J].Chinese Journal of Medical Physics,2018,35(4):210.[doi:DOI:10.3969/j.issn.1005-202X.2018.02.018]
[12]曾俊,吕红艳,李承红,等. 基于Android手机的生理参数移动监测系统[J].中国医学物理学杂志,2018,35(10):1187.[doi:DOI:10.3969/j.issn.1005-202X.2018.10.015]
 ZENG Jun,LÜ,Hongyan,et al. Physiology parameter monitoring system based on Android mobile phone[J].Chinese Journal of Medical Physics,2018,35(4):1187.[doi:DOI:10.3969/j.issn.1005-202X.2018.10.015]
[13]陈敏,王娆芬. 基于总体局部均值分解方法的心律失常特征提取与分类[J].中国医学物理学杂志,2019,36(10):1211.[doi:DOI:10.3969/j.issn.1005-202X.2019.10.019]
 CHEN Min,WANG Raofen. Feature extraction and classification of arrhythmia using ensemble local mean decomposition method[J].Chinese Journal of Medical Physics,2019,36(4):1211.[doi:DOI:10.3969/j.issn.1005-202X.2019.10.019]

备注/Memo

备注/Memo:
 【收稿日期】2018-12-11
【基金项目】上海理工大学第10期“微创励志创新基金”(YS30810141)
【作者简介】蒋莲,硕士,研究方向:医学信号处理,E-mail: Lisa_jiang09-
01@163.com
【通信作者】陈兆学,副教授,研究方向:医学图像和信号处理、模式识别,E-mail: chenzhaoxue@163.com
更新日期/Last Update: 2019-04-23